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Abstract
We present a pattern of programming useful for creat-
ing naturally-recursive solutions to a class of problems
over linked lists of possibly different lengths, and per-
haps even of unknown relative size. Our problems all
require these lists be viewed as tail-aligned, rather than
head aligned as is usual. These problems are simply-
stated operations over familiar, benign data structures
but they appear to require sophisticated programming
techniques in order to achieve reasonable and elegant
solutions.

Categories and Subject Descriptors F.2.2 [Com-
putations on discrete structures]

General Terms Languages

Keywords continuations, lists, suffix, Scheme

It’s a poor sort of memory that only works backwards
— Lewis Carroll, Alice in Wonderland

Dear Reader:

Before proceeding any further, could you spend a few
minutes thinking about the following programming ex-
ercises?

Lopsided Longest Common Suffix
Given two lists of lengths m and n respectively (m ≤ n),
write a function that finds the longest common suffix
using n recursive calls, and at most m returns from
those calls.

Longest Common Suffix
Given two lists of lengths m and n respectively, find the
longest common suffix using max(m,n) serious function
calls, and at most min(m,n) returns from those calls.

Thank you.

1. Introduction
We present a pattern of programming for solving prob-
lems over tail-aligned linked lists. These are interesting
in part because while the problems are simply stated
and the data structures are common and unassuming
we appear to require sophisticated programming tech-
niques in order to achieve elegant, naturally-recursive
solutions. Moreover, while left-facing linked lists are in-
efficient structures for these sorts of problems, they may
nonetheless show up in practice. Chief aspects of the
problems we solve are are:

• No sharing among the lists
• Lists are finite (non-circular) but of arbitrary length
• Lists do not know their length
• Lists must be viewed as tail-aligned (right-justified)
• cannot precompute the locations or number of pairs

of elements to compare

As a chief motivating example we consider the prob-
lem of finding the longest common suffix of two lists of
unknown and possibly different (finite) lengths. There is
a perfectly natural recursive solution for finding longest
common prefix of two such lists: we proceed using a fold-
like recursive descent down both lists in tandem until
either (a) one of the lists terminates, or (b) the elements
l1i and l2i differ.

(define (lcp l₁ l₂)
(cond

((or (null? l₁)
(null? l₂)
(not (eqv? (car l₁) (car l₂))))

'())
(else (cons (car l₁) (lcp (cdr l₁) (cdr l₂))))))

We assume without loss of generality that elements
of l1 and l2 can be compared with Scheme’s eqv? pred-
icate [9]. This is the kind of ordinary list processing
functions that might be assigned in an introductory pro-
gramming course [11]. A naïve solution to the longest
common suffix problem relies on lcp. If we reverse both

1 2016/6/24



inputs, find the longest common prefix, and then reverse
it, the result is the longest common suffix.

(define (lcs l₁ l₂)
(reverse (lcp (reverse l₁) (reverse l₂))))

While intuitive, this implementation is inelegant in
certain respects. We draw attention to several features
of this. Unlike the definition of lcp, we do not traverse
the lists in parallel. Nor do we make this single, fold-like
traversal. We instead make multiple traversals over the
lists, and over the result. We aim to create a definition
of lcs that also shares this behavior. We improve our
implementation starting with a simple change to lcp.
We will now cons onto an accumulator as we recur
down the lists until we reach the termination condition.
This builds the largest common prefix in reverse, and
so removes the need for the waiting call to reverse in
lcs.

(define (rlcp l₁ l₂ a)
(cond

((or (null? l₁)
(null? l₂)
(not (eqv? (car l₁) (car l₂))))

a)
(else (rlcp (cdr l₁) (cdr l₂) (cons (car l₁) a)))))

(define (lcs l₁ l₂)
(rlcp (reverse l₁) (reverse l₂) '()))

Can we do better still? Indeed, but further improve-
ments are not as straightforward. A still more elegant
solution to the longest common suffix problem is also a
more complicated one. We can however derive it via a
sequence of correctness-preserving transformations. We
first solve the simpler problem of lopsided longest com-
mon suffix: the longest common suffix when |l₁| ≤ |l₂|.

2. Lopsided Longest Common Suffix
We begin with an elegant solution for finding the longest
common suffix of two lists with the same length.

(define (lcs l₁ l₂)
(call/cc

(λ (j)
(letrec

((lcs
(λ (l₁ l₂)

(cond
((null? l₁) '())
((eqv? (car l₁) (car l₂))
(cons (car l₁) (lcs (cdr l₁) (cdr l₂))))

(else (j (lcs (cdr l₁) (cdr l₂))))))))
(lcs l₁ l₂)))))

In this definition, we first grab a “jumpout” contin-
uation j and define the recursive function lcs. We walk
down both lists simultaneously until reaching the null?

case. Because the problem specification requires both
lists have the same length, this check is sufficient in
the base case. When returning from the recursion, we
cons elements onto the result until reaching to the right-
most position i for which the elements l1i and l2i differ.
This is the first position, starting from the final tails
of the lists, where the elements at that position differ.
When we reach this position, we invoke the continua-
tion and abandon all waiting conses and continuation
invocations. This requires at worst n steps and n stack
frames. We make only one traversal into the lists, and
only return as far as the rightmost difference.

> (lcs '(1 2 3) '(1 2 3))
(1 2 3)

Since both lists are required to have the same length,
at each step as we walk down the lists we know how to
compute the result of the recursive call. The lists have
the same length, so the elements we wish to compare
are always in lock-step.

From the solution to this problem, we will derive
a solution to the more general problem of finding the
longest common suffix of two lists when we know that
|l₁| ≤ |l₂|. For this more general version of the problem
we cannot set up the correct element-wise comparisons
as we recur into the lists. We must compare the lists
element-wise, aligning on the ends of the lists. We
cannot if or by how much l₂ is longer than l₁ until
we reach the end of l₂ (see Figure 1).

We first transform the internal definition of lcs
into continuation-passing style, still just invoking the
captured jumpout continuation upon encountering the
rightmost difference. This correctness-preserving trans-
formation yields a program that still correctly computes
the longest common prefix for lists of the same length.

(define (lcs l₁ l₂)
(call/cc

(λ (j)
(letrec

((lcs
(λ (l₁ l₂ k)

(cond
((null? l₁) (k '()))
(else
(lcs (cdr l₁)

(cdr l₂)
(λ (r)

(if (eqv? (car l₁) (car l₂))
(k (cons (car l₁) r))
(j r)))))))))

(lcs l₁ l₂ j)))))

Since we do not know the length of the second list, we
cannot possibly know which of it’s elements to compare
to those of l₁ until reaching the end of l₂. However,
we do know as we traverse the lists where and in what
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Figure 1: Lists with longest common suffix (2 4).

order we will compare the elements of l₁. We can exploit
this by setting up the computation on the shorter list in
advance, and figuring out later against which elements
of the longer list to compare.

(define (lcs l₁ l₂)
(call/cc

(λ (j)
(letrec

((lcs
(λ (l₁ l₂ k)

(cond
((null? l₁) (k '()))
(else

((lcs (cdr l₁)
(cdr l₂)
(λ (r)

(λ (a₂)
(if (eqv? (car l₁) a₂)

(k (cons a₂ r))
(j r)))))

(car l₂)))))))
(lcs l₁ l₂ j)))))

We make this change in the definition above. We
no longer carry in the “continuation” both elements to
compare. Instead, the body is now a function expecting
the second element to compare, and we set up the
elements of l₂ as the arguments to these functions
that are now the results of the recursion. This too is
a correctness-preserving transformation; this function
still correctly computes the largest common suffix of
two lists of equal length. We put “continuation” in
quotes here because in making this change our solution
is no longer in continuation-passing style, or even tail
recursive.

This change is important for our purpose because it
enables us to sever the connection between the “into”
and “out of” the recursion. We are no longer forced to
compare the lists’ elements based on their positions in
our traversal into the lists.

We can think of this sequence of non-tail recursive
functions as a way to “slot” a sequence of element-
wise comparisons. To correctly solve this problem for
a potentially-longer second list, we need to slot these
comparisons in the right places. Rather than immedi-
ately begin comparing elements when we reach the end
of the first list we will move the continuation, as if by
some occult hand, to the end of the longer list. We re-

cur into the remainder of the longer list, and only when
reaching the end of the second list do we begin a tail-
aligned element-wise comparison against the elements
of l₁.
(define (lcs l₁ l₂)

(call/cc
(λ (j)

(letrec
((lcs

(λ (l₁ l₂ k)
(cond

((null? l₁)
(fold-right (λ (a₂ f) (f a₂))

(k '())
l₂))

(else
((lcs (cdr l₁)

(cdr l₂)
(λ (r)

(λ (a₂)
(if (eqv? (car l₁) a₂)

(k (cons a₂ r))
(j r)))))

(car l₂)))))))
(lcs l₁ l₂ j)))))

This completes the definition of lcs for lopsided lists.
We rely on the fold-right operator of SRFI-1 [10].
Instead of '(), the base case of the fold is (k '()), which
is the function awaiting the rightmost element of l₂.
> (lcs '(3 4 5) '(3 4 5 4 5))
(4 5)

3. Longest Common Suffix
We can modify this solution to solve the still more
general problem of finding the longest common prefix
for two lists of unknown and possibly different lengths.
In the previous statement of the problem we knew that
|l₁| ≤ |l₂| – we can no longer rely on that. Now, for both
l₁ and l₂, we test if the list is empty and if so, continue
to the end of the other before comparing elements.
We now also build two “slottable continuations”, even
though we will only use one. We can only know which
list is the shortest when we reach it’s end. So as we
traverse the lists we build one for each list, and when
we reach an empty list we discover which one to use.
We abstract both the creation and placement of these
“slottable continuations” into help functions that we
can reuse in the definition of lcs. For the sake of brevity
in the latter definition we rely on the curried define
syntax common to many Scheme implementations [1, 6].
(define (slot-f f l)

(fold-right (λ (a f) (f a)) f l))

(define (((build-k j aₛ k) r) aₗ)
(if (eqv? aₛ aₗ) (k (cons aₛ r)) (j r)))
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One additional complication arises when we general-
ize our solution to lists of unknown relative lengths. Be-
cause we cannot know which continuation will be used
as we recur into the lists, we provide the car of both lists
as arguments to the slotted continuation. This creates
an arity mismatch between these functions and the con-
text in which they are invoked. One possible solution is
to make these functions binary, and pass “dummy ar-
guments” along with the elements of l in slot-f. We
decline this option in favor of what we deem a more
elegant solution. The f functions remain unary, and we
eliminate the unneeded arguments by composing uncur-
ried versions of Church booleans tt and ff with our f
functions on the way out of the recursion.

(define (tt a₁ a₂) a₁)

(define (ff a₁ a₂) a₂)

We perform this operation repeatedly via an oper-
ator 2⟶1. We take as primitive a generalized defini-
tion of compose common to many Scheme implemen-
tations [1, 6]. We use our uncurried Church Boolean to
select the desired argument, which is then passed to the
appropriate function f. If invoking f on that argument
returns another such f awaiting yet another argument,
that f is again passed to (2⟶1 s), to again select the
appropriate argument.

(define ((2⟶1 s) f) (compose (2⟶1 s) f s))

We now complete a definition of lcs correct for lists
of unknown relative lengths with the help of these
functions.

(define (lcs l₁ l₂)
(call/cc

(λ (j)
(letrec

((lcs
(λ (l₁ l₂ k₁ k₂)

(cond
((null? l₁)
((2⟶1 ff) (slot-f (k₁ '()) l₂)))
((null? l₂)
((2⟶1 tt) (slot-f (k₂ '()) l₁)))
(else

((lcs
(cdr l₁)
(cdr l₂)
(build-k j (car l₁) k₁)
(build-k j (car l₂) k₂))
(car l₁)
(car l₂)))))))

(lcs l₁ l₂ j j)))))

We might have curried the two cars and instead used
actual Church Booleans as our selector functions, but
preferred this solution as there was no a priori reason

to always take the element of one list before the element
of the other. The following examples demonstrate lcs’s
usage on different lists of varying lengths.

> (lcs '() '())
()
> (lcs '(1 2 3) '(1 2 3))
(1 2 3)
> (lcs '(3 4 5) '(3 4 5 4 5))
(4 5)
> (lcs '(3 4 5) '())
()
> (lcs '(3 4 5 4 5) '(3 4 5))
(4 5)

The call/cc continuation we grab will be invoked
at most once, if invoked is used only to abort waiting
computation, and is never used as a value. We could
rely on more efficient control operators if our Scheme
system provides them [8]. Even without a more precise
control operator than call/cc, we have implemented an
elegant solution to the longest common suffix problem.
We perform a single, as far as possible simultaneous,
traversal of both lists, and continue into the longer list
from there. We return from the recursion at most only
as many times as the length of the shorter list, and in
fact only as far as the position of the lists’ rightmost
difference, tail-indexed.

To recapitulate, we derive our solution in the follow-
ing method:

• Solve the problem for lists of the same length
• Expose the control structure of the problem.
• Sever the connection between the lists by breaking

tail form.
• Move the “slottable continuation” to the end of the

longer list.
• Duplicate continuations to generalize solution to lists

of unknown relative lengths.

Other problems can be solved in a similar fashion.
In the following section, we give an example of another
such problem and derive its solution.

4. Element-wise maxima of tail-aligned
lists

Consider also the problem of computing a list of the
element-wise maxima of two tail-indexed lists with un-
known relative lengths. We wish to return a list that
at each tail-indexed position contains the maximum of
the two lists’ elements at that tail-indexed position, to
the beginning of the shorter list. From that point for-
ward, the result contains the longer lists’ elements at
that position, i.e. the prefix of the longer list.
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> (maxls '(4 1) '(2 3))
(4 3)
> (maxls '(4 1) '(1 2 3))
(1 4 3)
> (maxls '(0 1 2 3) '(4 1))
(0 1 4 3)

We develop our solution via a similar derivation. We
begin with a direct implementation of maxls correct for
lists of the same length.

(define (maxls l₁ l₂)
(cond

((null? l₁) '())
(else

(cons (max (car l₁) (car l₂))
(maxls (cdr l₁) (cdr l₂))))))

As before, we will construct a version that relies on
internal, continuation-passing definition of maxls, and
then modify this internal definition to break tail form
by passing an argument to the result of the recursion.
We grab a jumpout continuation as we did in lcs.
The maxls function demands more sophisticated control
management than did lcs. We no longer simply abort
when we return to the end of the shorter list. Instead, we
build up additional computation to perform. In order to
facilitate this additional complexity we first doubly CPS
the internal definition of maxls, and again use j as our
initial continuation.

(define (maxls l₁ l₂)
(call/cc

(λ (j)
(letrec

((maxls
(λ (l₁ l₂ c k)

(cond
((null? l₁) (c '() k))
(else

(maxls
(cdr l₁)
(cdr l₂)
(λ (r k)

(c (cons (max (car l₁) (car l₂)) r)
k))

k))))))
(maxls l₁ l₂ (λ (r k) (k r)) j)))))

This definition of maxls is correct for lists of equal
length. We then sever the connection between the “into”
and “out of” the recursion, passing (car l₂) as an
argument, and changing the result of the recursion into
a function expecting such an argument. To make maxls
also correct when the l₂ is longer, we must “slot” the
continuation into the correct location and also extend
the continuation to correctly operate on the initial,
leftmost elements of the longer list. We accomplish both
of these with a new, recursive definition of slot-f.

(define (slot-f c l k)
(cond

((null? l) (c '() k))
(else
((slot-f c (cdr l) (λ (r)

(λ (a)
(k (cons a r)))))

(car l)))))

In the case that l₂ is empty, we proceed as before.
Otherwise, we instead extend the continuation to cons
the remaining leftmost elements of the longer list onto
the result of the recursion. We break tail form here
as well, both because we cannot know when recurring
into l₂ which elements a₂ we want to cons onto the
front and because we will likely need to compare the
elements of l₁ against the elements of l₂ over which
we are currently traversing. The following definition of
maxls is now correct also when the second list is longer
than the first.

(define (maxls l₁ l₂)
(call/cc

(λ (j)
(letrec

((maxls
(λ (l₁ l₂ c k)

(cond
((null? l₁) (slot-f c l₂ k))
(else

((maxls
(cdr l₁)
(cdr l₂)
(λ (r k)

(λ (a₂)
(c (cons (max (car l₁) a₂) r)

k)))
k)

(car l₂)))))))
(maxls l₁ l₂ (λ (r k) (k r)) j)))))

To make maxls correct for two lists of unknown
relative lengths we make essentially the same changes
we did for lcs: we add a second base case, construct
and pass two continuations c, and pass the cars of both
lists. We avoid passing continuations k as arguments
to maxls since we only extend this continuation as we
return from the recursion. A definition of maxls with all
of these changes is below.

(define (((build-k c aₛ) r k) aₗ)
(c (cons (max aₛ aₗ) r) k))

We also rely on the definitions of tt, ff, and 2⟶1 from
before. We use j as the initial continuation rather than
the identity function because the call/cc continuation
escapes a waiting call to 2⟶1 when we compute the final
value.
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(define (maxls l₁ l₂)
(call/cc

(λ (j)
(letrec

((maxls
(λ (l₁ l₂ c₁ c₂)

(cond
((null? l₁)
((2⟶1 ff) (slot-f c₁ l₂ j)))
((null? l₂)
((2⟶1 tt) (slot-f c₂ l₁ j)))
(else

((maxls
(cdr l₁)
(cdr l₂)
(build-k c₁ (car l₁))
(build-k c₂ (car l₂)))

(car l₁)
(car l₂)))))))

(let ((c (λ (r k) (k r))))
(maxls l₁ l₂ c c))))))

5. Related Work
Programs over lists and other singly-linked data struc-
tures have been of interest since the earliest days of non-
numeric computation [13]. There is an almost unending
supply of fun and interesting puzzles based around lists,
continuations, or both [2, 5, 7].

Writing programs of this sort brings obviously to
mind the “There and Back Again” (TABA) program-
ming style [3]. The TABA style requires traversing a
second data structure at return-time. We impose the
additional complications of traversing the two struc-
tures when proceeding into the recursion, and further,
that we traverse them simultaneously as far as possible
(until exhausting the shorter of the two). These addi-
tional restrictions required more work on our part – for
instance, in the case of lcs a TABA definition might
have consumed one list in forward order, and at return-
time consume the second list (this presumes the second
argument was provided in reverse order).

We expect further connections with work on defunc-
tionalization. Wand’s “Continuation-based program
transformation strategies” [12] suggests transforming
programs into continuation-passing style and defunc-
tionalizing the continuations to achieve a different kind
of program. Danvy explores defunctionalization in a
variety of settings [4]. Although we explicitly and nec-
essarily break tail-form to achieve our solutions, we
expect the defunctionalized versions of our solutions
should likewise lead to interesting direct-style solutions.

6. Conclusion
In practice, we don’t always receive data in the most
convenient format. This may be simply the result of
unfortunate happenstance or coincidence. It may also

be a result of deliberate design. For instance, good de-
sign practice suggests keeping data in a format that eas-
ily supports common operations. We may have to keep
data in a format unfriendly for infrequently-executed
operations in order to increase overall efficiency. For
instance, if we frequently add elements to the front of
lists, but only infrequently search for the longest com-
mon suffix, linked lists might actually be the appropri-
ate data structures. We still want infrequent operations
to perform no worse than necessary. In truth, though,
we found these problems an intellectually challenging
exercises and the solutions beautiful. It is heartening
to find that simply-stated problems over such familiar
data structures can still lead to new and exciting pro-
gramming patterns.
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