
Multi-purpose web framework design
based on websocket over HTTP Gateway

A case study on GNU Artanis

Mu Lei
SZDIY Community
mulei@gnu.org

Abstract
The traditional Internet communication is largely based on HTTP
protocol, which provides hyperlinked, stateless exchange of infor-
mation. Although HTTP is convenient and easy to understand, it’s
problematic for real-time data exchange. Websockets protocol is
one of the ways to solve the problem. It reduces overhead and pro-
vides efficient, stateful communication between client and server
[1].

This paper introduces a web framework design in Scheme pro-
gramming language, which takes advantage of websocket protocol
to provide both convenience and efficiency. In addition to the ex-
pressiveness, Scheme provides powerful abstract ability to imple-
ment co-routines with continuations for the server core.

One of the significant aims is to design a high performance
generic server core with delimited continuations, and we’ll show
how it’s useful for Internet of Things (IoT).

GNU Artanis also provides useful modules for web program-
ming, RESTful, web caching, templating, MVC, and a novel ab-
straction for relational mapping to operate databases. We’ll give it
a summary in the rest of the paper.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Frameworks

General Terms Scheme, framework

Keywords Scheme, web framework, websocket, delimited contin-
uation, co-routine, generic server

1. Introduction
Web framework is a library for rapid prototyping web develop-
ment, and usually provide CLI (Command Line Interface) or GUI
(Graphical User Interface) tools to generate code for reducing
workload according to certain patterns specified by the developers.
In addition to using web specific language such as PHP, the older
approach for web programming is CGI (Common Gateway Inter-
face). Although many people think CGI is outdated, it is simple to
understand and easy to use. It can yet be regarded as a practical
way for web programming.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

Scheme and Functional Programming Workshop September 18th, 2016, Nara, Japan
Copyright © 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM [to be supplied]. . . $15.00

But the industry always requires more: a fast way for rapid pro-
totyping, an approach for both productivity and reliability, clean
and DRY (Don’t Repeat Yourself) for maintaining, high level ab-
stract for hiding details, less coding, securities, etc. Most of the
modern web frameworks such as Ruby on Rails provides the tools
necessary to produce a web application model, which is the under-
lying program itself [2].

This paper will use the term HTTP Gateway to indicate the
unified connection management interfaces and verification methods
of websocket over HTTP. The HTTP Gateway is not a new concept,
actually it’s hidden in many server design. It is worth to discuss
it explicitly, for it is important to understand how GNU Artanis
manages all the websocket connections. We’ll mention it in 3.2.

In addition, this paper will show a different way to implement
concurrent server. It is different from the callback way used in C or
Node.js. The continuations commonly used to implement concur-
rent processes [3][4][5]. It is proved that continuations could be the
model for directly expressing concurrency in Scheme language [6].
In this paper, we’ll take GNU Artanis as a study case to indicate the
same purpose. Moreover, GNU Artanis uses GNU Guile which is
a practical Scheme implementation which provides delimited con-
tinuations for better implementing co-routines. In this paper, we’ll
show a new way with the feature named delimited continuations,
which is better abstract than traditional continuations. We’ll dis-
cuss it in 2.1.1.

The C10K (concurrent in 10,000) and C10M (concurrent in
10,000,000) problem has told us that the performance is not the
only thing to concern for high concurrent server, but also the scal-
ability. The old method is to use select() or poll() has O.n/ com-
plexity, which is the handicap to hold more connections [7]. The
new method is kqueue()/epoll()/IOCP which has O(1) complexity
to query available connection sockets. We’ll take epoll() as an ex-
ample to discuss the scalability issue in 3.3.

Websockets is a protocol for two-way communication between
client and server over TCP connection. The client is, in a broad
sense, unnecessary to be a web browser. One of the benefit of
websocket is that the developers could take advantage of TLS used
in HTTPS for encryption. And another is that unified listening port
for arbitrary services. We will discuss websocket in 3.1.

Finally, we’ll discuss some of the notable features of GNU
Artanis in 4.

2. Some background knowledge
It is simplified to explain continuations and delimited continuations
in continuation passing style (CPS), and we’ll show how to transfer
their definition in semantics to Scheme code naturally for practical
programming.



2.1 First Class Continuations
A continuation is “the rest of the computation”. In Scheme, con-
tinuation is implemented as first class continuation, which is often
referred to as call/cc standing for call-with-current-continuation. It
captures (reifies) the state of underlying machine state named the
current continuation. The captured continuation is also referred as
escape procedure passed into the scope by the argument (as a func-
tion) of call/cc. When the escape procedure is called within the
context, the run-time discards the continuation at the time point of
the calling and throws the previous captured continuation back into
the machine state.

The continuations captured by call/cc often implies first class,
which means a continuation could be passed and returned from
functions, and stored in a data structure with indefinite extent. For
its “lightweight fork ability for parallel histories” avoiding to trap
into the operating system kernel, it’s widely considered to be the
ideal method to implement lightweight threads (co-routines/green
threads), although it’s also useful in many areas, such as backtrack-
ing, exception handling, and control flow analysis, etc.

variable:

JxK� D ��:.� .� x//

�–abstract:

J�x:M K� D ��:.� �v�0:.JM K�Œx 7! v� �0//

application:

J.M N/K� D ��:.JM K� �m:.JN K� �n:..m n/ �///

Figure 1: Continuation Semantics in spirit of CPS [8][9].

The J:::K� as a compound form means a simplified one-pass
CPS transformation with an environment � which maps variables
to values. This specific CPS transformation should be constrained
by two conditions: .1/ Shouldn’t introduce any administrative re-
dex (the reducible expression operated by a continuation capturing
lambda); .2/ Wouldn’t reduce the source term. And EŒ::: 7! :::�
means capture-avoiding substitution in expression E. The term
.E1 E2/ represents the application of a function E1 to an input
E2. The � is continuation which has the type that a function from
values to values. In spirit of CPS, the �–abstract in Figure 1 de-
notes a function from an environment � to a function accepting an
argument v and a continuation �0.

And we give semantic of call/cc according to Figure 1:

J.call/cc F /K� D ��:.JF K� �e:.e �v�0:.� v/ �//

Call/cc accepts a function evaluated from F . The e is the pre-
viously mentioned escape procedure. The �0 is the continuation of
inner context which is trivial for the throwing, so it is never used,
and actually replaced by the continuation � captured by call/cc. As
we mentioned previously, this is what happens when the escape
procedure throws current continuation. With this semantic defini-
tion, we could easily rewrite it as Scheme code:

For the application of J.call/cc F /K�, we could simplify all the
forms to make it clearer:

(( lambda (k)
(lambda (e)
(e (lambda (v _) (k v)) k)))

F)

Apparently, we have the definition of call=cc in Scheme code:

(define call/cc
(lambda (e k)

(e (lambda (v _) (k v)) k)))

The common placeholder “ ” is �0 in semantic definition, which
is trivial that could be ignored. The � is dismissed since the envi-
ronment is managed by Scheme inexplicitly.

In most of the Scheme implementations, call=cc is rarely in CPS
which helped us to analysis the control flow for better understand-
ing of continuations. But practically, we have to dismiss the explicit
continuation passing (k or � above) which makes the expression
complex. It is hard to show how the continuation � is processed in
non-CPS form, so we just need to know the continuation will be
captured and threw by in Scheme inexplicitly.

Although call/cc is a fine way to implement threads, it is well
known that call/cc captures too many things which are overkill for
most other control features. To avoid this problem, we introduce
delimited continuations.

2.1.1 Delimited Continuations
Delimited continuations are more expressive than call/cc. Nev-
ertheless, it captures less things to make the continuations more
lightweight.

As an ordinary continuation stands for “the rest of the compu-
tation”, a delimited continuation represents “the rest of the compu-
tation up to somewhere” [10].

Although many competing delimited control operators exist
in language research community, shift/reset are common to be
mentioned. Following the semantics in Figure 1, shift and reset
has the definition [8]:

J.resetE/K� D ��r :.�r .JEK� �x:x//
J.shift c M/K� D ��s :.JM K�Œc 7! �v�0:.�0 .�s v//� �x:x/

Note �x:x is a common procedure named identity which is used
to indicate an empty continuation here. Apparently, if there’s no
shift within reset, the evaluated expressionE will be returned with-
out any change from reset because it’s applied by identity function
as the empty continuation. But if shift is evaluated within, the �r

has no chance to be applied because the whole context returns by
applying �s . What does it mean? It means that the continuation was
truncated (delimited) to �s , and the trivial �r won’t be captured.
That’s why it can reduce the cost compared to full continuation. It
is very different from full-continuation capturing in call=cc. This
feature would solve the “overkilled” problem we’ve mentioned in
the end of last section.

So far, we’ve explained the preliminary principle of delimited
continuation. It is necessary to stop the discussion in semantics
and get back to our topic. We’re going to depict how GNU Guile
handles delimited continuations, and how it helps for our main
purpose for implementing co-routines.

Although it is natural to implement delimited continuations by
complex CPS transforming in semantics. It’s never the best perfor-
mance way. GNU Guile implemented delimited continuations in
the direct way that uses the language’s native stack representation,
and not requiring global or local transformations [11]. Rather than
CPS transformation, the direct implementation will copy the con-
tinuation chain resides in the heap, and involves copying of contin-
uation frames both during reification and reflection.

According to the test results, it shows that the direct implement
approach is fabulously faster than CPS transforming way [9]. The
direct implementation captures continuation by copying stack di-
rectly. Nevertheless, there could possibly be further optimizing of
stack/heap management and copying methods to make it better.

There’re three equivalent terms of interfaces to handle delim-
ited continuations in GNU Guile. In addition to the common term



shift/reset, %/abort, and call-with-prompt/abort-to-prompt.
The only difference is their operational approach.

We choose call-with-prompt/abort-to-prompt for its third ar-
gument as a function will receive the thrown continuation, and
will be called automatically each time the abort-to-prompt is
called. This feature is very useful to implement the scheduler of
co-routines. We’ll show it in 2.2. A common usage of it could be
this:

(call-with-prompt
'(the-tag-to-locate-prompts)
(lambda ()
... ; Do your job

(abort-to-prompt
'(the-tag-to-locate-prompts))
... ; continue the work
...)

(lambda (k . args)
;; k is current continuation
(save-the-continuation k)
(scheduler ...))))

Delimited continuations have been implemented in few lan-
guages: GNU Guile, PLT Scheme, Scheme48, OCaml, Scala. Con-
sidering that many mainstream dynamic languages has first class
continuations (call/cc), optimistically, it is possible that more lan-
guages will implement delimited continuations too. In view of
above mentioned reasons, the study case in this paper may shed
some light on server design issue for the future.

2.2 Co-routines
Co-routines are essentially procedures which save states between
calls. It has become a very important form of concurrency, and
avoids practical difficulties (race conditions, deadlock, etc) to re-
duce complexities. Developers are unnecessary to take care of syn-
chronization by themselves, but leave it to this paradigm as its built-
in feature. Co-routines is not generic enough to solve any concur-
rency problem, however, it’s idea solution for server-side develop-
ment.

It is demonstrated that co-routines may easily be defined by
users given first class continuations[12]. The term “first class” here
means a continuation could be passed and returned from functions,
and stored in a data structure with indefinite extent. The co-routine
could be implemented as a procedure with local state. In server-
side development, in addition to traditional HTTP requesting, most
servers need to maintain long live session for a connection. It is
required that these procedures could be broken for a while, and
sleep to the time when next packet arrives. In old fashion, people
uses OS level threads (say, pthread) to avoid blocking. But it brings
some critical overheads (trap into kernel, locks, synchronization),
no mention the difficulties in debugging programs with threads.
Ironically, it is even complained by people that threads model is
bad idea for practices [13].

Since Scheme provides full support for continuations, imple-
menting co-routines is nearly trivial, requiring only that a queue
of continuations be maintained. Moreover, this paper introduce the
way to implement co-routines with delimited continuations. We’ll
see how this approach is convenient and clean later in this section.

As described in 2.1.1, GNU Guile provides several similar ab-
stract interfaces to handle delimited continuations. Here we choose
the pair functions call-with-prompt and abort-to-prompt for it,
since it’s easier to invoke scheduler procedure which is used to
resume the stopped co-routines while throwing the delimited con-
tinuations.

The basic principle of co-routine implementation is that saving
context to a first class object then adding it into a queue, and
scheduling around till the queue is empty. So the first step is to
initialize a queue:

(define *work-queue* (new-queue))

And the spawn interface, it’s common to spawn a new co-
routine. The call-with-prompt function was introduced in 2.1.1.

(define-syntax-rule (spawn body ...)
(call-with-prompt
(default-prompt-tag)
(lambda ()
body ...)

save-context))

As described in 2.1.1, the last argument of call-with-prompt is a
function which receives current continuation as the first argument.
Obviously, we should save it to the queue for it needs to sleep. The
second argument is optional, and we customize it as the index of
the request in our example.

(define (save-context k idx)
(format #t

"Request~a EWOULDBLOCK! ~%"
idx)

(queue-in! *work-queue* (cons idx k)))

The sleeping feature is implemented with abort-to-prompt.
When it’s called, the run-time will throw the current continuation
bound to k as the first argument of save-context function.

(define-syntax-rule (coroutine-sleep idx)
(abort-to-prompt
(default-prompt-tag)
idx))

Each time when certain condition were met, the related delim-
ited continuation would be resumed. The resume function will re-
sume the task properly. Note that the resumed continuation should
be re-delimit again to avoid stack issues. And when calling k for
resuming continuations, it is necessary to pass idx as the argument.

(define-syntax-rule (resume k idx)
(call-with-prompt
(default-prompt-tag)
(lambda ()

(k idx))
save-context))

Finally, we need a scheduler to arrange all the tasks to be
completed automatically.

(define (schedule)
(cond
(( queue-empty? *work-queue*)
(display "Schedule end!\n"))

(else
(let ((task (queue-out! *work-queue*)))
(resume (cdr task) (car task))
(schedule)))))

Now we have a simple co-routine framework. The code to
implement co-routines in GNU Artanis is far more complex than
the listed code. Nevertheless, they’re in similar principle and easier
to understand. For now, it’s time to use them for requests handling.

(define (coroutine-1)
(display "Accepted request 1\n")
(display "Processing request 1\n")
;; If EWOULDBLOCK
(coroutine-sleep 1)
;; Resumed when condition is met
(display "Continue request 1\n")
(display "End coroutine-1\n"))

(define (coroutine-2)
(display "Accepted request 2\n")



(display "Processing request 2\n")
;; If EWOULDBLOCK
(coroutine-sleep 2)
;; Resume
(display "Continue request 2\n")
;; EWOULDBLOCK again
(coroutine-sleep 2)
;; Resume
(display "End coroutine-2\n"))

(define (run)
(spawn (coroutine-1))
(spawn (coroutine-2))
(schedule))

Listing 1: Co-routine handling requests

Let’s see the result. Certainly, in real cases, we use meaningful
functions to replace these string printing functions. Anyway, these
printing lines indicate what could be happened here.

Accepted request 1
Processing request 1
Request1 EWOULDBLOCK!
Accepted request 2
Processing request 2
Request2 EWOULDBLOCK!
Continue request 1
End coroutine-1
Continue request 2
Request2 EWOULDBLOCK!
End coroutine-2
Schedule end!

Listing 2: Coroutines running result

3. Server Core Design
Having finally learned about this powerful weapon named co-
routines, we may consider how to bleed it out for the potentiality
of a server program. We’ll reasonably show the server core design
in both functionality and performance concern.

As is the case of the performance concern, non-blocking and
edge-triggered I/O multiplexing, as we’ll describe it in GNU/Linux
environment, epoll() will be discussed in this case. GNU Artanis
uses epoll() for I/O multiplexing.

Websockets protocol plays an important role in the function-
ality. The idea of the generic server is to implement a websocket
library, and use it to parse requests wrapped in websocket protocol,
then redirect a requests to a proper service handler (local or re-
mote, decided by users). This is called HTTP Gateway. With such
a design we could handle connections in various protocols (rather
than dedicated one protocol) wrapped in websocket. It is so-called
generic.

When we talk about the generic server core for a web frame-
work, it seems confused a bit. Because a web framework should
have a dedicated HTTP server. But we could implement generic
server over HTTP because websocket makes it possible. So let’s
see how websocket make it.

3.1 Websocket
Although the term websocket looks like kind of web related stuff,
it is an independent TCP-based protocol. The only relationship to
HTTP is that the handshake process is based on HTTP protocol as
an upgrade request.

This makes it possible to allow messages to be passed back
and forth while keeping the connection open. This approach keeps
a bi-directional ongoing conversation taking place between client
(most of the time it’s a browser) and the server, beyond, websocket

provides full-duplex communication. And all the communications
are done over TCP port (usually 80), which is of benefit for those
environments which block non-web Internet connections behind
a firewall. This makes all the connections long living sessions
rather than short session as traditional HTTP does and provides the
possibility for implementing Comet technology, the old way for
full-dumplex communication on web, in a more convenient way.

Figure 2: Websocket handshake and communication

Another benefit to transporting data over HTTP is that many
existing HTTP security mechanisms also apply to websocket. With
this unified security model, a list of standard HTTP security meth-
ods could be applied to a websocket connection. For example, the
same encryption as HTTPS using TLS/SSL. It’s the same way to
configure TLS encryption for websocket as you do for HTTPS with
certificates. In HTTPS, the client and server first establish a se-
cure envelop which begin with HTTP protocol. Websocket Secure
(WSS) use the exactly the same way with handshake in HTTP, then
upgrade to websocket protocol.

Figure 3: HTTPS and Websocket Secure

3.2 HTTP Gateway
One of the important concept of GNU Artanis is the HTTP Gate-
way. As mentioned earlier in this paper, HTTP Gateway is not a
new concept, for it’s transparent in many server program.

The HTTP Gateway, as described intuitively, is a portal between
client and customized protocol processing module of the server



program, and taking the HTTP negotiation to allow them to share
information by communicating with the protocol over HTTP.

Figure 4: HTTP Gateway architecture in GNU Artanis

The Figure 4 shows the HTTP Gateway architecture in GNU
Artanis. It provides arbitrary protocol services over websockets.
Beyond the web server, it becomes a generic server, which handles
connections of multi-protocols in the same time. A generic server is
rarely mentioned before, because most of the application of server
programs are for dedicated protocol, and to provide single service
as its main duty.

For the dedicated server, FTP, HTTP as in web service, game
server, IRC, etc. Usually, the remote server starts a service program
as a daemon listening on a TCP/UDP port according to a conven-
tion, and provides just one service in a dedicated protocol. Such a
decoupled pattern is obviously meets the KISS (Keep It Smart and
Simple) principle. Moreover, when one service is down, it won’t
effect the others.

For the generic server, people don’t have to listen on many
TCP ports, there’s just one port, 80 or 443 (for HTTPS). And the
HTTP Gateway will dispatch the requests to the related service,
and maintain the long live session for each connection in a high
concurrent way. In the simplest way, all the services are running in
GNU Artanis rather than standalone, and it’s good for both quick
developing and deployment. Some people may think it’s too tight
coupled, if one of the services is broken, the whole GNU Artanis
may down. How we solve it? Fortunately, it is allowed to make each
service standalone, similar to CGI, but in bytevector way according
to websocket configuration, rather than HTTP requests redirecting.
This would be good enough to solve the issue.

So, what’s the value of a generic server?
It is obvious that the massive protocol-customized connections

will appear in such a scenario like Internet of Things (IoT). There’ll
be many IoT nodes as the massive clients, with many sensors or
monitors, which may require many application level protocols, al-
though their messaging protocol maybe the same (MQTT over
websocket). For generic server reduces the workload of customiz-
ing and management of multi-protocols, and IoT based applications
are well-known to be the next big thing, the generic server may act
important role in next decades.

3.3 Concurrency
The eternal subject of server side development is always concur-
rency. Many years ago, the industry has been focusing on C10K
problem dealing with at least 10; 000 connection concurrently.
Nowadays, it’s becoming C10M which means at least 10 million
connections concurrently.

No matter how the number is increasing, the main purpose is to
hold more connections concurrently as possible. Unfortunately, it
is useless if one just purchase stronger machines with more RAM.
In this way, the performance of single connection processing could
be higher, but increasing few connections concurrently.

The bottleneck is not the performance of machine, but the algo-
rithm of events dispatching. The traditional select() and poll() are
outdated, for their O.n/ complexity drags the performance when
it tries to query large number of sockets. The modern epoll() has
constant time complexity for that, say O.1/, and obviously win the
title.

Beyond, the edge-trigger mode of epoll() co-operated with non-
blocking I/O is widely used in the industry for high performance
concurrent programming. It is believed that the concern of a server
is not only about concurrency, but also the optimizing of the lan-
guage implementation, and better exception handling for robust-
ness of the server system.

Of course, it’s necessary to provide advanced scaling methodol-
ogy for higher concurrency need to meet the future cloud comput-
ing. But it’s out of scope in this paper.

GNU Artanis choose epoll() for its I/O multiplexing, and take
advantage of the non-blocking to implement asynchronous I/O
in co-routines. This model is proved to be practical and well-
known in industry. We choose this model (epoll + non-blocking)
to co-operate with co-routines to provide good performance and
concurrency.

4. Some features in GNU Artanis
In addition to the server core, there’re some notable features in
GNU Artanis.

4.1 RESTful
REST stands for representational state transfer, which is an archi-
tectural style consisting of a coordinated set of components, con-
nectors, and data elements within a distributed hypermedia system,
where the focus is on component roles and a specific set of interac-
tions between data elements rather than implementation details.

To the extent that systems conform to the constraints of REST
they can be called RESTful. It is often communicate over HTTP
with the same method name (GET, POST, PUT, DELETE, etc.)
that web browsers use to retrieve web pages and to send data to
remote servers. REST systems interface with external systems as
web resources identified by URIs.

The name “representational state” is intended to evoke an image
of how a well-designed Web application behaves: a network of
web pages, where the user progresses through the application by
selecting links (state transitions), resulting in the next page (state)
being transferred to the user and rendered for their use.

(get "/hello/:name"
(lambda (rc)

(format #f "hello ~a ~%"
(params rc "name"))))

;; curl example.com/hello/mulei
;; ==> hello mulei

4.2 MVC
Model-View-Controller (MVC) is a software architectural pattern
for implementing user interfaces on computers. It divides a given
software application into three interconnected parts, so as to sepa-
rate internal representations of information from the ways that in-
formation is presented to or accepted from the user. Traditionally
used for desktop graphical user interfaces (GUIs), this architecture
has become extremely popular for designing web applications.



The Model is the unchanging essence of the application/domain.
And there’ll be more than one interfaces with the Model, they’re
called Views. The Views could be GUI, CLI or API. Although Views
are very often graphical, they dont have to be. A Controller is an
object that lets you manipulate a View. In a brief, Controller handles
the input whilst the view handles the output [14].

GNU Artanis provides CLI tools for generating MVC template
code, this will be introduced in 4.5.

4.3 Relational Mapping
Usually, Relational Mapping (RM) stands for ORM (Object Rela-
tional Mapping). It is a programming technique for converting data
between incompatible type systems in object-oriented (OO) pro-
gramming languages.

However, although GNU Guile has an object system named
GOOPS, GNU Artanis choose not to use OO for programming.
It is enough to use the features of Functional Programming (FP)
to replace the essentials in OO, and it’s proved in GNU Artanis
development. Because of this reason, GNU Artanis doesn’t imple-
ment ORM, but closures to replace classes, and message passing for
dispatching the methods to mimic half-baked OO, which is more
lightweight and less complexity than OO. It is called Functional
Programming Relational Mapping (FPRM) in GNU Artanis.

4.4 Sessions
HTTP sessions allows associating information with individual vis-
itors.

A session is a semi-permanent interactive information inter-
change, also known as a dialogue, a conversation or a meeting, be-
tween two or more communicating devices, or between a computer
and user. A session is set up or established at a certain point in time,
and then torn down at some later point. An established communica-
tion session may involve more than one message in each direction.
A session is typically, but not always, stateful, meaning that at least
one of the communicating parts needs to save information about
the session history in order to be able to communicate, as opposed
to stateless communication, where the communication consists of
independent requests with responses.

Traditionally, there’re three kinds of session management in
GNU Artanis:

� Simple, use hashtables for storing sessions in the memory;
� Filesystem, use files for storing sessions;
� Database, use Database for storing sessions.

4.5 CLI tools
Providing CLI tools is becoming a fashion for most of the frame-
works. Basically, there’re four commands in GNU Artanis:

To initialize a new application folder:

art create project-name

And the draw command is useful to generate MVC template
code to save developers work:

art draw [controller/model] name

Note that Views are generated along with Controllers.
Sometimes it’s necessary to move from one database vendor

to another, or to upgrade the version of database software being
used. So the database migration could be useful to reconstruct the
schema and tables, then import all the data to the new environment
automatically.

art migrate operator name

The last but not least, the work command is used to start the
server, and establish the service listening on the specified port.

art work

5. Future work
It is possible to implement map/reduce for cluster, and very high
scalability with serializable continuations to scale the whole server
system by adding infinite nodes. These issues are open to be dis-
cussed and practiced in the future.

Acknowledgments
First, thanks free software movement and its community for all the
contributions.

Thanks SZDIY community for providing all the conditions, and
all the kindly encouraging. And I would like to thank my second
daughter who is only 18 days. It came suddenly in advanced that
disorganized my writing plan. Fortunately, I have strong server core
to handle these two concurrent tasks, exhausted.

References
[1] V. Pimentel and B. G. Nickerson. Communicating and displaying real-

time data with websocket. IEEE Internet Computing, 16(4):45–53,
July 2012. ISSN 1089-7801. doi: 10.1109/MIC.2012.64.

[2] D. Geer. Will software developers ride ruby on rails to suc-
cess? Computer, 39(2):18–20, Feb 2006. ISSN 0018-9162. doi:
10.1109/MC.2006.74.

[3] S. Krishnamurthi, P. W. Hopkins, J. McCarthy, P. T. Graunke, G. Pet-
tyjohn, and M. Felleisen. Implementation and use of the plt scheme
web server. Higher-Order and Symbolic Computation, 20(4):431–
460, 2007. ISSN 1573-0557. doi: 10.1007/s10990-007-9008-y. URL
http://dx.doi.org/10.1007/s10990-007-9008-y.

[4] R. Hieb and R. K. Dybvig. Continuations and con-
currency. SIGPLAN Not., 25(3):128–136, Feb. 1990.
ISSN 0362-1340. doi: 10.1145/99164.99178. URL
http://doi.acm.org/10.1145/99164.99178.

[5] R. Hieb, R. K. Dybvig, and C. W. Anderson, III. Sub-
continuations. Lisp Symb. Comput., 7(1):83–110, Jan.
1994. ISSN 0892-4635. doi: 10.1007/BF01019946. URL
http://dx.doi.org/10.1007/BF01019946.

[6] O. Shivers. Continuations and threads: Expressing machine concur-
rency directly in advanced languages.

[7] J. Lemon. Kqueue-a generic and scalable event notification facility. In
USENIX Annual Technical Conference, FREENIX Track, pages 141–
153, 2001.

[8] O. Danvy and A. Filinski. Representing control: a study of the cps
transformation, 1992.

[9] M. Gasbichler and M. Sperber. Final shift for call/cc:: Direct
implementation of shift and reset. In Proceedings of the Sev-
enth ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP ’02, pages 271–282, New York, NY, USA, 2002.
ACM. ISBN 1-58113-487-8. doi: 10.1145/581478.581504. URL
http://doi.acm.org/10.1145/581478.581504.

[10] E. Sumii. An implementation of transparent migration on standard
scheme. In Proceedings of the Workshop on Scheme and Functional
Programming, Technical Report 00-368, Rice University, pages 61–
64. Citeseer, 2000.

[11] A. Wingo. Guile and delimited continuations, 2010. URL
https://goo.gl/FKxtRf.

[12] C. T. Haynes, D. P. Friedman, and M. Wand. Continuations and corou-
tines. In Proceedings of the 1984 ACM Symposium on LISP and Func-
tional Programming, LFP ’84, pages 293–298, New York, NY, USA,
1984. ACM. ISBN 0-89791-142-3. doi: 10.1145/800055.802046.
URL http://doi.acm.org/10.1145/800055.802046.

[13] J. Ousterhout. Why threads are a bad idea (for most purposes). In
Presentation given at the 1996 Usenix Annual Technical Conference,
volume 5. San Diego, CA, USA, 1996.



[14] J. Deacon. Model-view-controller (mvc) architecture. Online][Citado
em: 10 de março de 2006.] http://www. jdl. co. uk/briefings/MVC. pdf,
2009.


