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I’m a PhD student working on verification of
machine code (factorial, length of a linked list)

The start:



Context: interactive theorem proving

Proofs are performed in HOL4 — a fully expansive theorem prover

HOL4 theorem prover

HOL4 kernel

All proofs expand at runtime 
into primitive inferences in 
the HOL4 kernel.

The kernel implements the 
axioms and inference rules 
of higher-order logic.

Aim: to prove deep functional properties of machine code.



Context: interactive theorem proving

photo idea: Larry Paulsson



Machine codeMachine code is neat

Machine code,

E1510002 B0422001 C0411002 01AFFFFFB

is impossible to read, write or maintain manually.

However, for theorem-prover-based formal verification:

machine code is clean and tractable!

Reason:

I all types are concrete: word32, word8, bool.

I state consists of a few simple components: a few registers, a
memory and some status bits.

I each instruction performs only small well-defined updates.



Challenges of Machine Code

ARM/x86/PowerPC model 
(1000...10,000 lines each)

machine code correctness

{P} code {Q}code

Challenges: ‣ several large, detailed models
‣ unstructured code
‣ very low-level and limited resources



InfrastructureInfrastructure in HOL4

During my PhD, I developed the following infrastructure:

decompiler

ARM x86 PowerPC

compilerfunc

code

(code,thm)

(func,thm)

machine-code Hoare triple

. . . each part will be explained in the next slides.



Hoare triplesHoare triple

Each model can be evaluated, e.g. ARM instruction
add r0,r0,r0 is described by theorem:

|- (ARM READ MEM ((31 >< 2) (ARM READ REG 15w state)) state =

0xE0800000w) ^ ¬state.undefined )
(NEXT ARM MMU cp state =

ARM WRITE REG 15w (ARM READ REG 15w state + 4w)

(ARM WRITE REG 0w

(ARM READ REG 0w state + ARM READ REG 0w state) state))

As a total-correctness machine-code Hoare triple:

|- SPEC ARM MODEL Informal syntax for this talk:
(aR 0w x * aPC p) {R0 x ⇤ PC p }
{(p,0xE0800000w)} p : E0800000
(aR 0w (x+x) * aPC (p+4w)) {R0 (x+x) ⇤ PC (p+4) }



Definition of Hoare triple

{p} c {q} () 8s r. (p ⇤ r ⇤ code c) s =)
9n. (q ⇤ r ⇤ code c) (run n s)

frame code separate

total correctness machine code sem.

Program logic can be used directly for verification.

separating conjunction

But direct reasoning in this embedded logic is tiresome.



Decompiler
Decompilation

Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3A00000 mov r0, #0

4: E3510000 L: cmp r1, #0

8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]

16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f (r0, r1,m) = let r0 = 0 in g(r0, r1,m)

g(r0, r1,m) = if r1 = 0 then (r0, r1,m) else

let r0 = r0+1 in

let r1 = m(r1) in

g(r0, r1,m)



Decompilation, correct?Decompilation, correct?

Decompiler automatically proves a certificate theorem:

f
pre

(r0, r1,m) )

{ (R0, R1, M) is (r0, r1,m) ⇤ PC p ⇤ S }
p : E3A00000 E3510000 12800001 15911000 1AFFFFFB

{ (R0, R1, M) is f (r0, r1,m) ⇤ PC (p + 20) ⇤ S }

which informally reads:

for any initially value (r0, r1,m) in reg 0, reg 1 and memory,
the code terminates with f (r0, r1,m) in reg 0, reg 1 and memory.



Decompilation verification exampleDecompilation, verification example

To verify code: prove properties of function f ,

8x l a m. list(l , a,m) ) f (x , a,m) = (length(l), 0,m)

8x l a m. list(l , a,m) ) f
pre

(x , a,m)

since properties of f carry over to machine code via the certificate.

Proof reuse: Given similar x86 and PowerPC code:

31C085F67405408B36EBF7

38A000002C140000408200107E80A02E38A500014BFFFFF0

which decompiles into f 0 and f 00, respectively. Manual proofs
above can be reused if f = f 0 = f 00.



Decompilation how to

{ R0 i * R1 j * PC p }
 p+0 :
{ R0 (i+j) * R1 j * PC (p+4) }

{ R0 i * PC (p+4) }
 p+4 :
{ R0 (i >> 1) * PC (p+8) }

{ LR lr * PC (p+8) }
 p+8 :
{ LR lr * PC lr }

{ R0 i * R1 j * LR lr * PC p }
 p : e0810000 e1a000a0 e12fff1e
{ R0 ((i+j)>>1) * R1 j * LR lr * PC lr }

How to decompile:

1. derive Hoare triple theorems
   using Cambridge ARM model 

2. compose Hoare triples

3. extract function

avg (i,j) = (i+j)>>1

2

3

(Loops result in recursive functions.)

e0810000  add r0, r1, r0
e1a000a0  lsr r0, r0, #1
e12fff1e  bx   lr

e0810000
e1a000a0
e12fff1e



Decompiler cont.

Implementation:

‣ ML program which fully automatically performs forward proof

‣ no heuristics and no dangling proof obligations

‣ loops result in tail-recursive functions

Case studies:

‣ verified copying garbage collector

‣ bignum library routines



I want more automation and abstraction!

Part 2:



Proof-producing compilation
Compiler

Synthesis often more practical. Given function f ,

f (r1) = if r1 < 10 then r1 else let r1 = r1 � 10 in f (r1)

our compiler generates ARM machine code:

E351000A L: cmp r1,#10

2241100A subcs r1,r1,#10

2AFFFFFC bcs L

and automatically proves a certificate HOL theorem:

` {R1 r1 ⇤ PC p ⇤ s }
p : E351000A 2241100A 2AFFFFFC

{R1 f (r1) ⇤ PC (p+12) ⇤ s }



Compilation, example cont.Compilation example, cont.

One can prove properties of f since it lives inside HOL:

` 8x . f (x) = x mod 10

Properties proved of f translate to properties of the machine code:

` {R1 r1 ⇤ PC p ⇤ s}
p : E351000A 2241100A 2AFFFFFC

{R1 (r1 mod 10) ⇤ PC (p+12) ⇤ s}

Additional feature: the compiler can use the above theorem to
extend its input language with: let r1 = r1 mod 10 in



ImplementationImplementation

To compile function f :

1. generate, without proof, code from input f ;

2. decompile, with proof, a function f 0 from generated code;

3. prove f = f 0.

Features:

I code generation completely separate from proof

I supports many light-weight optimisations without any
additional proof burden: instruction reordering, conditional
execution, dead-code elimination, duplicate-tail elimination, ...

I allows for significant user-defined extensions

Details in Myreen et al. [CC’09]



Infrastructure againLISP case study

Idea: create LISP implementations via compilation.

decompiler

ARM x86 PowerPC

compiler
HOL4 functions for 

LISP parse, eval, print

verified code for LISP primitives car, cdr, cons, etc. 

ARM, x86, PowerPC code 
and certificate theorems

machine-code Hoare triple



Lisp formalisedLISP formalised

LISP s-expressions defined as data-type SExp:

Num : N! SExp

Sym : string! SExp

Dot : SExp! SExp! SExp

LISP primitives were defined, e.g.

cons x y = Dot x y

car (Dot x y) = x

plus (Num m) (Num n) = Num (m + n)

The semantics of LISP evaluation was taken to be Gordon’s
formalisation of ‘LISP 1.5’-like evaluation, next slide. . .



Extending the compiler
Extending the compiler

We define heap assertion ‘lisp (v1, v2, v3, v4, v5, v6, l)’ and prove
implementations for primitive operations, e.g.

is pair v1 )
{ lisp (v1, v2, v3, v4, v5, v6, l) ⇤ pc p }
p : E5934000
{ lisp (v1, car v1, v3, v4, v5, v6, l) ⇤ pc (p + 4) }

size v1 + size v2 + size v3 + size v4 + size v5 + size v6 < l )
{ lisp (v1, v2, v3, v4, v5, v6, l) ⇤ pc p }
p : E50A3018 E50A4014 E50A5010 E50A600C ...

{ lisp (cons v1 v2, v2, v3, v4, v5, v6, l) ⇤ pc (p + 332) }

with these the compiler understands:

let v2 = car v1 in ...
let v1 = cons v1 v2 in ...



Reminder
{ R0 i * R1 j * PC p }
 p+0 :
{ R0 (i+j) * R1 j * PC (p+4) }

{ R0 i * PC (p+4) }
 p+4 :
{ R0 (i >> 1) * PC (p+8) }

{ LR lr * PC (p+8) }
 p+8 :
{ LR lr * PC lr }

{ R0 i * R1 j * LR lr * PC p }
 p : e0810000 e1a000a0 e12fff1e
{ R0 ((i+j)>>1) * R1 j * LR lr * PC lr }

How to decompile:

1. derive Hoare triple theorems
   using Cambridge ARM model 

2. compose Hoare triples

3. extract function

avg (i,j) = (i+j)>>1

2

3

(Loops result in recursive functions.)

e0810000  add r0, r1, r0
e1a000a0  lsr r0, r0, #1
e12fff1e  bx   lr

e0810000

e1a000a0

e12fff1e

We change these triples to be about 
lisp heap. Result: more abstraction.



The final case study of my PhD

Verified LISP implementations on

ARM, x86 and PowerPC

Magnus O. Myreen and Michael J. C. Gordon

Computer Laboratory, University of Cambridge, UK

Abstract. This paper reports on a case study, which we believe is the

first to produce a formally verified end-to-end implementation of a func-

tional programming language running on commercial processors. Inter-

preters for the core of McCarthy’s LISP 1.5 were implemented in ARM,

x86 and PowerPC machine code, and proved to correctly parse, evaluate

and print LISP s-expressions. The proof of evaluation required working

on top of verified implementations of memory allocation and garbage

collection. All proofs are mechanised in the HOL4 theorem prover.

1 Introduction

Explicit pointer manipulation is an endless source of errors in low-level programs.

Functional programming languages hide pointers and thereby achieve a more

abstract programming environment. The downside with functional programming

(and Java/C# programming) is that the programmer has to trust automatic

memory management routines built into run-time environments.

In this paper we report on a case study, which we believe is the first to

produce a formally verified end-to-end implementation of a functional program-

ming language. We have implemented, in ARM, x86 and PowerPC machine code,

a program which parses, evaluates and prints LISP; and furthermore formally

proved that our implementation respects a semantics of the core of LISP 1.5 [6].

Instead of assuming correctness of run-time routines, we build on a verified im-

plementation of allocation and garbage collection.

For a flavour of what we have implemented and proved consider an example:

if our implementation is supplied with the following call to p
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Running the Lisp interpreter

LISP interpreter in use

To execute verified machine code, we:

1. wrote C wrapper around verified machine code,

2. compiled using gcc,

3. checked with hexdump that gcc didn’t alter the machine code,

4. ran code on real hardware:

Nintendo DS lite (ARM) MacBook (x86) old MacMini (PowerPC)

LISP interpreter in use

Example: paper gives a definition of pascal-triangle, for which:

(pascal-triangle ’((1)) ’6)

returns:

((1 6 15 20 15 6 1)

(1 5 10 10 5 1)

(1 4 6 4 1)

(1 3 3 1)

(1 2 1)

(1 1)

(1))

Timings: ARM 0.090 ms, x86 0.001 ms, PowerPC 0.004 ms



A sudden need for a serious Lisp implementation.

Part 3:



Two projects meet

Jared Davis Magnus Myreen

A self-verifying 
theorem prover

Verified Lisp 
implementations

verified LISP on
ARM, x86, PowerPC

My theorem prover is written in Lisp. 
Can I try your verified Lisp? Umm.. sure!

Does your Lisp support ..., ... and ...?  No, but it could ...



verified LISP on
ARM, x86, PowerPC

Running Milawa

Milawa’s bootstrap proof:

‣ 4 gigabyte proof file:                   
>500 million unique conses

‣ takes 16 hours to run on a 
state-of-the-art runtime (CCL)

hopelessly “toy”



Jitawa: verified LISP 
             with JIT compiler 

Running Milawa

Milawa’s bootstrap proof:

‣ 4 gigabyte proof file:                   
>500 million unique conses

‣ takes 16 hours to run on a 
state-of-the-art runtime (CCL)

Result:
‣ a new verified Lisp which is able 

to host the Milawa thm prover



 A short introdution to

work by Jared Davis

• Milawa is styled after theorem provers 
such as NQTHM and ACL2,

• has a small trusted logical kernel similar 
to LCF-style provers, 

• ... but does not suffer the performance 
hit of LCF’s fully expansive approach. 



core derived rules

decision
 procedures

Comparison with LCF approach

work by Jared Davis

LCF-style approach the Milawa approach
• all proofs pass through the 

core’s primitive inferences
• extensions steer the core

• all proofs must pass the core
• the core proof checker can be 

replaced at runtime

rewriter

core

simplifier

SAT/SMT
FOL provers

custom tools

case splitting

rewriting

‘auto’ tactics
...

...



Requirements on runtime
work by Jared Davis

Milawa uses a subset of Common Lisp which 

(Lisp subset defined on later slide.)

is for most part first-order pure functions over 
natural numbers, symbols and conses,

cons car cdr consp natp symbolp 
equal + - < symbol-< if

uses primitives:

macros: or and list let let* cond 
first second third fourth fifth

and a simple form of lambda-applications.



Requirements on runtime

• uses destructive updates, hash tables

• prints status messages, timing data

• uses Common Lisp’s checkpoints

• forces function compilation

• makes dynamic function calls

• can produce runtime errors

work by Jared Davis

...but Milawa also

}

}

not 
necessary

runtime 
must support

(Lisp subset defined on later slide.)



Runtime must scale
Designed to scale:

• just-in-time compilation for speed

‣ functions compile to native code

• target 64-bit x86 for heap capacity

‣ space for 231 (2 billion) cons cells (16 GB)

• efficient scannerless parsing + abbreviations

‣ must cope with 4 gigabyte input

• graceful exits in all circumstances

‣ allowed to run out of space, but must report it



Workflow

1. specified input language: syntax & semantics

2. verified necessary algorithms, e.g.

• compilation from source to bytecode

• parsing and printing of s-expressions

• copying garbage collection

3. proved refinements from algorithms to x86 code

4. plugged together to form read-eval-print loop

~30,000 lines of HOL4 scripts



AST of input language
term ::= Const sexp

| Var string
| App func (term list)
| If term term term

| LambdaApp (string list) term (term list)
| Or (term list)
| And (term list) (macro)

| List (term list) (macro)

| Let ((string � term) list) term (macro)

| LetStar ((string � term) list) term (macro)

| Cond ((term � term) list) (macro)

| First term | Second term | Third term (macro)

| Fourth term | Fifth term (macro)

func ::= Define | Print | Error | Funcall
| PrimitiveFun primitive | Fun string

primitive ::= Equal | Symbolp | SymbolLess
| Consp | Cons | Car | Cdr |
| Natp | Add | Sub | Less

sexp ::= Val num

| Sym string

| Dot sexp sexp



compile:  AST     bytecode list

bytecode ::= Pop pop one stack element

| PopN num pop n stack elements

| PushVal num push a constant number

| PushSym string push a constant symbol

| LookupConst num push the nth constant from system state

| Load num push the nth stack element

| Store num overwrite the nth stack element

| DataOp primitive add, subtract, car, cons, . . .

| Jump num jump to program point n

| JumpIfNil num conditionally jump to n

| DynamicJump jump to location given by stack top

| Call num static function call (faster)

| DynamicCall dynamic function call (slower)

| Return return to calling function

| Fail signal a runtime error

| Print print an object to stdout

| Compile compile a function definition



How do we get just-in-time compilation?

We have verified compilation algorithm:

compile:  AST     bytecode list

but compiler must produce real x86 code....

• bytecode is represented by numbers in 
memory that are x86 machine code

• we prove that jumping to the memory 
location of the bytecode executes it 

Solution:

Treating code as data:

⇥p c q. {p} c {q} = {p � code c} ⇤ {q � code c}

   

Definition of Hoare triple:

{p} c {q} = 8s r. (p ⇤ r ⇤ code c) s =)
9n. (q ⇤ r ⇤ code c) (run n s)



I/O and efficient parsing
Jitawa implements a read-eval-print loop:

• reading next string from stdin

• printing null-terminated string to stdout

  

Use of external C routines adds assumptions to proof:



Read-eval-print loop

• Result of reading lazily, writing eagerly

• Eval = compile then jump-to-compiled-code

• Specification: read-eval-print until end of input

is empty (get input io)
(k, io) exec�! io

¬is empty (get input io)⇤
next sexp (get input io)) = (s, rest)⇤
(sexp2term s, [], k, set input rest io) ev�⇥ (ans, k0, io0)⇤
(k0, append to output (sexp2string ans) io0) exec�⇥ io

00

(k, io) exec�⇥ io

00



Correctness theorem

Top-level correctness theorem:

{ init state io ⇥ pc p ⇥ ⌃terminates for io⌥ }
p : code for entire jitawa implementation

{ error message ⇧ ⌅io0. ⌃([], io) exec�⇤ io

0⌥ ⇥ final state io

0 }

Each execution is 
allowed to fail with 
an error message.

If there is no error message, 
then the result is described by 
the high-level op. semantics.

There must be enough 
memory and I/O 

assumptions must hold.

This machine-code Hoare 
triple holds only for 

terminating executions.

list of numbers



Verified code
  $ cat verified_code.s

       /*  Machine code automatically extracted from a HOL4 theorem.  */
       /*  The code consists of 7423 instructions (31840 bytes).      */

        .byte   0x48, 0x8B, 0x5F, 0x18
        .byte   0x4C, 0x8B, 0x7F, 0x10
        .byte   0x48, 0x8B, 0x47, 0x20
        .byte   0x48, 0x8B, 0x4F, 0x28
        .byte   0x48, 0x8B, 0x57, 0x08
        .byte   0x48, 0x8B, 0x37
        .byte   0x4C, 0x8B, 0x47, 0x60
        .byte   0x4C, 0x8B, 0x4F, 0x68
        .byte   0x4C, 0x8B, 0x57, 0x58
        .byte   0x48, 0x01, 0xC1
        .byte   0xC7, 0x00, 0x04, 0x4E, 0x49, 0x4C
        .byte   0x48, 0x83, 0xC0, 0x04
        .byte   0xC7, 0x00, 0x02, 0x54, 0x06, 0x51
        .byte   0x48, 0x83, 0xC0, 0x04
        ...



Running Milawa on Jitawa

CCL
SBCL
Jitawa

  16 hours
  22 hours
128 hours

Running Milawa’s 4-gigabyte booststrap process:

(8x slower than CCL)

Parsing the 4 gigabyte input:

CCL
Jitawa

  716 seconds
    79 seconds

(9x slower than Jitawa)

Jitawa’s compiler performs 
almost no optimisations.



The end-to-end result

Part 4:



Jitawa
verified 
LISP

Proving Milawa sound

Lisp implementation (x86)
(approx. 7000 64-bit x86 instructions)

semantics of Milawa’s logic

inference rules of Milawa’s logic

Lisp semantics

semantics of x86-64 machine

Milawa theorem prover
(kernel approx. 2000 lines of Milawa Lisp)

verification of a Lisp
implementation

proving soundness 
of the source code

Assumes x86 model, C wrapper, OS, hardware



Milawa theorem prover
(kernel approx. 2000 lines of Milawa Lisp)

https://raw.githubusercontent.com/HOL-Theorem-Prover/HOL/master/examples/theorem-prover/milawa-prover/core.lisp 

https://raw.githubusercontent.com/HOL-Theorem-Prover/HOL/master/examples/theorem-prover/milawa-prover/core.lisp


Proving the top-level theorem
The top-level theorem: 
   relates the logic’s semantics 
   with the execution of the x86 machine code.

A. formalise Milawa’s logic

B. prove that Milawa's kernel is faithful to the logic

C. connect the verified Lisp implementation

‣ syntax, semantics, inference, soundness

‣ run the Lisp parser (in the logic) on Milawa’s kernel
‣ translate (with proof) deep embedding into shallow
‣ prove that Milawa’s (reflective) kernel is faithful to logic

‣ compose with the correctness thm for Lisp system

Steps:



… output lines that are all true 
w.r.t. the semantics of the logic.
… output lines that are all true 
w.r.t. the semantics of the logic.
… output lines that are all true 
w.r.t. the semantics of the logic.

There must be enough memory and 
input is Milawa’s kernel followed by 

call to main for some input.

Theorem: Milawa is sound down to x86

This approach works in part because Jitawa’s print function, though used by
Milawa’s kernel, is not made available in the Milawa logic. In other words, a user-
defined function can’t trick us into invalidly printing (PRINT (THEOREM . . . )).

This soundness theorem can be related back to the operational semantics of
Jitawa through the following theorem, which was automatically derived by our
tool for lifting deep embeddings into shallow embeddings:

. . . =) (Fun "MILAWA-MAIN", [input ], state) ap�! (milawa main input state)

6 Top-level soundness theorem

Now we are ready to connect the above soundness result to the top-level correct-
ness theorem for Jitawa, which was proved in previous work [13]. Its top-level
correctness theorem is stated in terms of a machine-code Hoare triple [11], which
can informally be read as saying: if Jitawa’s implementation is started from a
state where enough memory is allocated (init state) and the input stream of
ASCII characters holds input for which Jitawa terminates, then either an error
message is reported or a final state described by exec�! is reached for which ok is
true and output is the final state of the output stream (final state).

{ init state input ⇤ pc pc ⇤ hterminates for inputi }
pc : code for entire jitawa implementation

{ error message _ 9output . h([], input) exec�! (output , true)i ⇤ final state output }

Roughly speaking, exec�! involves parsing some input, evaluating it with ap�! ,
and printing the result. By manually unrolling exec�! to reveal the ap�! relation
for the call of milawa main, it was straightforward to prove our top-level theorem
relating Milawa’s soundness down to the concrete x86 machine code.

This theorem, shown below, can informally be read as follows: if the ASCII
input to Jitawa is the code for Milawa’s kernel followed by a call to Milawa’s
main function on any input input , then the machine-code implementation for
Jitawa will either abort with an error message, or succeed and print line ok
output (according to compute output) followed by SUCCESS. Here strings are
lists of characters, hence the use of list append (++) for strings.

8input pc.

{ init state (milawa implementation++ "(milawa-main ’input)") ⇤ pc pc }
pc : code for entire jitawa implementation

{ error message _ (let result = compute output (parse input) in
hevery line line ok resulti ⇤
final state (output string result ++ "SUCCESS")) }

7 Quirks, bugs and other points of interest

We ran into some surprises during the proof.

13

where

A few details were less straightforward. Each layer has its own abstraction
level, e.g. the kernel and runtime allow macros but these are expanded away
in the logic, and the function table uses S-expression syntax but the runtime’s
operational semantics only sees an abstraction of this syntax. There are also
some language mismatches: the logic has primitives (e.g. ordp and ord-<) which
are not primitive in the runtime, and the runtime has several primitives that
are not part of the logic (e.g., funcall, print, error). To further complicate
things, some of these components can lag behind: the function table starts o↵
mentioning functions that have not yet been defined in the logic. Such functions
can only be defined using exactly the definition given in the function table,
otherwise the defining event, admit-defun or admit-witness, causes a runtime
error. We will explain this invariant in more detail in forthcoming journal article
and/or extensive technical report.

We proved that each event handling function, e.g. admit-thm, admit-defun,
admit-switch etc., maintains the invariant. As a result, the kernel’s top-level
event-handling loop maintains the invariant.

5.4 Theorem: Milawa is faithful to its logic

Milawa’s kernel reads input, processes it, and then prints output that says
whether it has accepted the proofs and definitions it has been given. In order to
make it clearer what Milawa claims to have proved, we extended Milawa with
a new event, (admit-print �), which causes � to be printed if it has already
been proved as a theorem, or else fails. For instance, this new event can print:

(PRINT (THEOREM (PEQUAL* (+ A B) (+ B A))))

We formulate the soundness of Milawa as a guarantee about the possible out-
put: whatever the input, Milawa will only ever print THEOREM lines for formulas
that are true w.r.t. the semantics |=⇡ of the logic. More precisely, we first define
what an acceptable line of output is w.r.t. a given logical context ⇡:

line ok (⇡, l) = (l = "NIL") _
(9n. (l = "(PRINT (n . . . ))") ^ is number n) _
(9�. (l = "(PRINT (THEOREM �))") ^ context ok ⇡ ^ |=⇡ �)

We then prove that Milawa’s top-level function, milawa main, only produces out-
put lines that satisfy line ok, assuming that no runtime errors were raised during
execution, i.e., that ok is true. Here compute output (definition omitted) is a
high-level specification of what output lines coupled with their respective logical
context the input cmds produces.

9ans k output ok.

milawa main cmds init state = (ans , (k, output , ok)) ^
(ok =) (ans = Sym "SUCCESS") ^

let result = compute output cmds in
every line line ok result ^
output = output string result)

12

Machine code terminates either 
with error message, or …



Learning from the mistakes. Doing it better.

Final Part:



LISP case study

Idea: create LISP implementations via compilation.

decompiler

ARM x86 PowerPC

compiler
HOL4 functions for 

LISP parse, eval, print

verified code for LISP primitives car, cdr, cons, etc. 

ARM, x86, PowerPC code 
and certificate theorems

machine-code Hoare triple

verified compiler  
as function in logic

verified x86

The x86 for the compile function was produced as follows:

A bit cumbersome....

A better compiler compiler?

…should have compiled the verified compiler using itself!



Bootstrapping the compiler

Instead:  we should bootstrap the verified compile function, 
i.e. evaluate the compiler on a deep embedding 
of itself within the logic:

EVAL ``compile COMPILE``

derives a theorem:

compile COMPILE  =  compiler-as-machine-code
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that this REPL implementation prints only those results permitted
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a breadth of topics including lexing, parsing, type checking, in-

cremental and dynamic compilation, garbage collection, arbitrary-

precision arithmetic, and compiler bootstrapping.
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1. Introduction

The last decade has seen a strong interest in verified compilation;

and there have been significant, high-profile results, many based

on the CompCert compiler for C [1, 14, 16, 29]. This interest is

easy to justify: in the context of program verification, an unverified

compiler forms a large and complex part of the trusted computing

base. However, to our knowledge, none of the existing work on

verified compilers for general-purpose languages has addressed all

aspects of a compiler along two dimensions: one, the compilation

algorithm for converting a program from a source string to a list of

numbers representing machine code, and two, the execution of that

algorithm as implemented in machine code.

Our purpose in this paper is to explain how we have verified

a compiler along the full scope of both of these dimensions for a

practical, general-purpose programming language. Our language is

called CakeML, and it is a strongly typed, impure, strict functional

language based on Standard ML and OCaml. By verified, we mean

that the CakeML system is ultimately x86-64 machine code along-

side a mechanically checked theorem in higher-order logic saying

that running that machine code causes an input program to yield

output or diverge as specified by the semantics of CakeML.

We did not write the CakeML compiler and platform directly in

machine code. Instead we write it in higher-order logic and synthe-

sise CakeML from that using our previous technique [22], which

puts the compiler on equal footing with other CakeML programs.

We then apply the compiler to itself, i.e., we bootstrap it. This

avoids a tedious manual refinement proof relating the compilation

algorithm to its implementation, as well as providing a moderately

large example program. More specifically,

• we write, and can run, the compiler as a function in the logic,

and we synthesise a CakeML implementation of the compiler

inside the logic;

• we bootstrap the compiler to get a machine-code implementa-

tion inside the logic; and

• the compiler correctness theorem thereby applies to the

machine-code implementation of the compiler.

Another consequence of bootstrapping is that we can include the

compiler implementation as part of the runtime system to form an

interactive read-eval-print loop (REPL). A verified REPL enables

high-assurance applications that provide interactivity, an important

feature for interactive theorem provers in the LCF tradition, which

were the original motivation for ML.

Contributions
• Semantics that are carefully designed to be simultaneously suit-

able for proving meta-theoretic language properties and for sup-

porting a verified implementation. (Section 3)

• An extension of a proof-producing synthesis pathway [22] orig-

inally from logic to ML, now to machine code (via verified

compilation). (Sections 4–6, 10)
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The first bootstrapping of a formally verified compiler.
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We have developed and mechanically verified a new compiler back-

end for CakeML. Our new compiler features a sequence of inter-

mediate languages that allows it to incrementally compile away

high-level features and enables verification at the right levels of

semantic detail. In this way, it resembles mainstream (unverified)

compilers for strict functional languages. The compiler supports

efficient curried multi-argument functions, configurable data rep-

resentations, exceptions that unwind the call stack, register alloca-

tion, and more. The compiler targets several architectures: x86-64,

ARMv6, ARMv8, MIPS-64, and RISC-V.
In this paper, we present the overall structure of the compiler, in-

cluding its 12 intermediate languages, and explain how everything

fits together. We focus particularly on the interaction between the

verification of the register allocator and the garbage collector, and

memory representations. The entire development has been carried

out within the HOL4 theorem prover.Categories and Subject Descriptors D.2.4 [Software Engineer-

ing]: Software/Program Verification—Correctness proofs, Formal

methods; F.3.1 [Logics and meanings of programs]: Specifying

and Verifying and Reasoning about Programs—Mechanical veri-

fication, Specification techniques, InvariantsKeywords Compiler verification; ML; verified optimisations.1. IntroductionOptimising compilers are complex pieces of software and, as such,

errors are almost inevitable in their implementations, as Yang et al.

(2011) showed with systematic experiments. The only compiler

Yang et al. did not find flaws in was the verified part of the Comp-

Cert C compiler (Leroy 2009).The CompCert project has shown that it is possible to formally

verify a realistic, optimising compiler, and thereby encouraged

significant interest in compiler verification. In fact, much of this

interest has gone into extending or building on CompCert itself

(Stewart et al. 2015; Ševčík et al. 2013; Mullen et al. 2016).

Verified compilers for functional languages have not previously

reached the same level of realism, even though there have been

many succesful projects in this space, e.g. the compositional Pilsner

compiler (Neis et al. 2015) and the previous CakeML compiler

which is able to bootstrap itself (Kumar et al. 2014).
This paper presents the most realistic verified compiler for a

functional programming language to date.• The new compiler has a fully featured source language, namely

CakeML, which includes user-defined modules, signatures, mu-

tually recursive functions, pattern matching, user-defined ex-

ceptions and datatypes, references, mutable arrays, immutable

vectors, strings, etc.• The compiler passes through all the usual compiler phases, in-

cluding register allocation via Iterated Register Coalescing. It

uses 12 intermediate languages that together allow implemen-

tation of optimisations at practically any level of abstraction.
• The compiler has efficient, configurable data representations

and properly compiles the call stack into memory, including the

ML-style exception mechanism.• The compiler takes concrete syntax as input and produces con-

crete machine code in five real machine languages as output. It

supports both 32-bit and 64-bit architectures.None of these are new ideas in compiler implementation, and we

freely take inspiration from existing compilers, including Comp-

Cert and OCaml. Our contribution here is the verification effort,

especially how it affects the compiler’s structure and vice versa.

Traditional compiler design is motivated by generated-code

quality, compiler-user experience (especially compile times), and

compiler-writer convenience. Designing a verified compiler is not

simply a matter of taking an existing compiler and proving it cor-

rect while simultaneously fixing all its bugs. To start with, it is

probably not written in the input language of a theorem proving

system, but even if it could be translated into such a form, we

would not expect to get very far in the verification effort. Although

theoretically possible, verifying a compiler that is not designed for

verification would be a prohibitive amount of work in practice.

To make the verification tractable, the compiler’s design must

also consider the compiler verifier. This means that the compiler’s

intermediate languages, including their semantics, need to be care-

fully constructed to support precise specification of tractable invari-

ants to be maintained at each step of compilation. Of course, we
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12 intermediate languages, 5 target archs, register allocation, etc.

Tomorrow at ICFP!



Looking back…

A Verified Lisp Implementation for  
A Verified Theorem Prover

Result:

2005:

I’m a PhD student working on verification of
machine code (factorial, length of a linked list)

???

???

???



A Verified Lisp Implementation for  
A Verified Theorem Prover

Result:

2005:

I’m a PhD student working on verification of
machine code (factorial, length of a linked list)

basic reasoning about real machine code

powerful automation

verification of garbage collectors

synthesis from (abstract) functional specs

verified Lisp interpreters

verified just-in-time compiler for Lisp

verified compiler bootstrapping (ML)

…

Questions?
Thank you for inviting me!



Intuition for Bootstrapping
Proof-producing synthesis

Verified parsing Verified type inference

HOL functions CakeML AST

Verified compiler backend

CakeML AST machine code

ASCII CakeML AST CakeML AST typeable yes/no

Verified compiler backend

CakeML AST machine codeCakeML AST machine codeHOL functions CakeML AST CakeML AST machine codeCakeML AST machine codeCakeML AST machine code



Intuition for Bootstrapping

CakeML AST machine code

ASCII CakeML AST CakeML AST typeable yes/no

CakeML AST machine codeCakeML AST machine code

HOL functions CakeML AST

CakeML AST machine codeCakeML AST machine code

CakeML AST machine code

HOL functions

input

output

verified x86 implementation of parsing, type inference, and compilation


