A Verified Lisp Implementation for
A Verified Theorem Prover

Scheme workshop 2016, Nara, Japan

Magnus O. Myreen — University of Cambridge, but now at Chalmers University of Technology
Jared Davis — Centaur Technology, Inc., but now at Apple

Result:

A Verified Lisp Implementation for
A Verified Theorem Prover

Claim:

The most comprehensive proof-based evidence
of a theorem prover's soundness to date.

This talk: The Journey

2005:

I’'m a PhD student working on verification of
machine code (factorial, length of a linked list)

\/ Theme: exploring how to
50 / make verification scale.

\

P07 \ Result:

K Verified Lisp Implementation for
A Verified Theorem Prover

\

The start:

I’'m a PhD student working on verification of
machine code (factorial, length of a linked list)

Context: interactive theorem proving

Aim: to prove deep functional properties of machine code.

Proofs are performed in HOL4 — a fully expansive theorem prover

HOL4 theorem prover

HOL4 kernel

All proofs expand at runtime

into primitive inferences in
the HOL4 kernel.

The kernel implements the
axioms and inference rules
of higher-order logic.

Context: interactive theorem proving

photo idea: Larry Paulsson

Machine code

Machine code,
E1510002 B0422001 C0411002 O1AFFFFFB

Is Impossible to read, write or maintain manually.

However, for theorem-prover-based formal verification:
machine code is clean and tractable!

Reason:
» all types are concrete: word32, word8, bool.

» state consists of a few simple components: a few registers, a
memory and some status bits.

» each instruction performs only small well-defined updates.

Challenges of Machine Code

machine code correctness

ARM/x86/PowerPC model
de |
[code (1000...10,000 lines each) {P} code {Q}

Challenges: » several large, detailed models
» unstructured code
» very low-level and limited resources

Infrastructure

During my PhD, | developed the following infrastructure:

func -------- >[compiler } ————— ¥ (code,thm)
code ----- —>[decompiler } ----p (func,thm)
[machine-code Hoare triple j

... each part will be explained in the next slides.

Hoare triples

Each model can be evaluated, e.g. ARM instruction
add r0,r0,r0 iIs described by theorem:

| - (ARM_READ_MEM ((31 >< 2) (ARM_READ REG 15w state)) state
OxE0800000w) A —state.undefined =
(NEXT_ARM_MMU cp state =

ARM_WRITE_REG 15w (ARM_READ REG 15w state + 4w)
(ARM_WRITE_REG Ow

(ARM_READ REG Ow state + ARM_READ REG Ow state) state))

As a total-correctness machine-code Hoare triple:

|- SPEC ARM_MODEL Informal syntax for this talk:
(aR Ow x * aPC p) {ROx*xPCp}
{(p,0xE0800000w) } p : E0800000

(aR Ow (x+x) * aPC (p+4w)) { RO (x+x) x PC (p+4) }

Definition of Hoare triple

C‘separating conjunction)

(frams) Q/code separate)

V
{ptc{q} <= Vsr. (pxrxcodec)s —=

dn. (q * r * code ¢) (run n s)
A\

(total correctness) C machine code sem.)

Program logic can be used directly for verification.
But direct reasoning in this embedded logic is tiresome.

Decompiler

Decompiler automates Hoare triple reasoning.

Example: Given some ARM machine code,

0: E3AO00000 mov r0O, #0O

4: E3510000 L: cmp rl, #0

8: 12800001 addne r0, rO, #1
12: 15911000 ldrne r1, [ril]
16: 1AFFFFFB bne L

the decompiler automatically extracts a readable function:

f(ro,r1,m) = let o =20in g(rg, 1, m)

g(rg,ri,m) = if n =0 then (rp, r1, m) else
let o = rp+1 in
let 1 = m(ry) in
g(l’o, , m)

Decompilation, correct!?

Decompiler automatically proves a certificate theorem:

fpre(rOa rn, m) =

{(RO,R1,M) is (rg,r1,m)*x PCpxS}
p : E3A0O0000 E3510000 12300001 15911000 1AFFFFFB
{(RO,R1,M)is f(rg,ri,m)«x PC(p+20)«S}

which informally reads:

for any initially value (rg, r1, m) in reg 0, reg 1 and memory,
the code terminates with f(rg, ri, m) in reg 0, reg 1 and memory.

Decompilation verification example

To verify code: prove properties of function f,

Vxlam. list(/,a,m) = f(x,a, m)

(length(1),0, m)
Vxlam. list(l,a,m) = fpe(x,a, m)

since properties of f carry over to machine code via the certificate.

Proof reuse: Given similar x86 and PowerPC code:

31CO085F67405408B36EBF7
33A000002C140000408200107ESOAO2E38A500014BFFFFFO

which decompiles into " and ", respectively. Manual proofs
above can be reused if f = " = ",

Decompilation how to

How to decompile:
{ROi*RIj*PCp}

Pr0: e@8IRO00 add r0, rl, ro
{RO(i+)) *RIj*PC (p*+4) } elaf¥300 1sr r0, ro, #1
el2fffffite bx 1r

{RO i * PC (p+4) }

pt4: . .
/ {RO (i >> I) * PC (p+8) } |. derive Hoare triple theorems
using Cambridge ARM model

{LR Ir * PC (p+8) } 2. compose Hoare triples

p+8:
/ {LR Ir*PC Ir } 3. extract function

(Loops result in recursive functions.)
{ROi*RIj*LRIr*PCp]}
p :e0810000 el1a@00a0d ellfffle

(RO ((i+)>>1) *RIj* LR Ir¥PCIr} — @) —> avg (ij) = (i+)>>|

Decompiler cont.

Implementation:

» ML program which fully automatically performs forward proof
» no heuristics and no dangling proof obligations

» loops result in tail-recursive functions

Case studies:

» verified copying garbage collector

» bignum library routines

Part 2:

| want more automation and abstraction!

Proof-producing compilation

Synthesis often more practical. Given function f,
f(rp) = if n <10then rp elselet n =r — 10 in f(r)

our compiler generates ARM machine code:

E351000A L: cmp r1,#10
2241100A subcs rl,rl1,#10
2AFFFFFC bcs L

and automatically proves a certificate HOL theorem:

F {R1n*PCpx*xs}
p : E351000A 2241100A 2AFFFFFC
{R1f(r)*PC(p+12)xs}

Compilation, example cont.

One can prove properties of f since it lives inside HOL:

- Vx. f(x) = x mod 10

Properties proved of f translate to properties of the machine code:

= {R1rn*xPCpxs}
p : E351000A 2241100A 2AFFFFFC
{R1 (r; mod 10) x PC (p+12) * s}

Additional feature: the compiler can use the above theorem to
extend its input language with: let 1 = r mod 10 in _

Implementation

To compile function f:
1. generate, without proof, code from input f;
2. decompile, with proof, a function f’ from generated code;

3. prove f = f’.

Features:
» code generation completely separate from proof

» supports many light-weight optimisations without any
additional proof burden: instruction reordering, conditional

execution, dead-code elimination, duplicate-tail elimination, ...

» allows for significant user-defined extensions

Infrastructure again

ldea: create LISP implementations via compilation.

verified code for LISP primitives car, cdr, cons, etc.

v
HOL4 functions for : ARM, x86, PowerPC code
LY | - - ’ ;
LISP parse, eval, print [comprier } > and certificate theorems
[decompiler]
[machine-code Hoare triple]

[ARM [x86] PowerPC]

Lisp formalised

LISP s-expressions defined as data-type SExp:

Num : N — SExp
Sym : string — SExp
Dot : SExp — SExp — SExp

LISP primitives were defined, e.g.

cons x y = Dotxy
car (Dot x y) = x
Num (m + n)

plus (Num m) (Num n)

The semantics of LISP evaluation was taken to be Gordon’s
formalisation of ‘LISP 1.5'-like evaluation

Extending the compiler

We define heap assertion ‘lisp (vi, v2, v3, v4, V5, Vg, 1)’ and prove
implementations for primitive operations, e.g.

Is_pair vi =

{ ||Sp (V17 V2, V3, V4, V5, Ve, /) *pCcp }
b : E5934000

{ lisp (v1,car vi,va, vg, v5,vg, 1) xpc (p+4) }

size vqi + size vo + size v3 + size v4 + Size vs +size vg < | =

{ ||Sp (V17 V2, V3, V4, V5, Ve, /) *pCcp }
p . EBOA3018 E50A4014 E50A5010 E50A600C ...

{ ||Sp (COﬂS Vi V2, V2, V3, V4, V5, Ve, /) * pC (p T 332) }

with these the compiler understands:

let vo = car vy in ...
let vi = cons v; v in ...

Reminder

How to decompile:
{ROi*RIj*PCp}

p+0 : 0810000
/ (RO (i+)) * RI | * PC (p+4) }
{RO i * PC (p+4) }

pt4 : ela@00ald . .
/ {RO (i >> 1) * PC (p+8) } |. derive Hoare triple theorems
using Cambridge ARM model

We change these triples to be about]

lisp heap. Result: more abstraction.
ClZT1 11 1C DX [T

{LR Ir * PC (p+8) } 2. compose Hoare triples
p+t8: el2fffle
/ {LR Ir*PC Ir } 3. extract function

(Loops result in recursive functions.)
{ROi*RIj*LRIr*PCp]}
p :e0810000 el1a@00a0d ellfffle
(RO ((+)>>1) *RIj*LRIr*PCIr} —(@f)—> avg (i) = (i+)>>!

T
he final case study of my PhD

Computer Laboratory; University

_ This paper reports
.fed end-to-

ormally vert
0Cessors: Inter-

nted in ARM,

ressions.

 top of verified implement
T e arve eC anised 1 he H

Running the Lisp interpreter

AiarmizmeTpm iama P

i

Nintendo DS lite (ARM) MacBook (x86) old MacMini (PowerPC)

(pascal-triangle ’((1)) ’6)

returns:

((1 6 15 20 15 6 1)
(1510 10 5 1)
(146 41)

(1 331)
(12 1)
(1 1)
(1))

Part 3:

A sudden need for a serious Lisp implementation.

Iwo projects meet

LM)’ theorem prover is written in Lisp.

Can | try your verified Lisp? j (Umm.. sure!)

| |
i Does your Lisp support ..., ... and ...}) C No, but it could)

|

Jared Davis Magnus Myreen
A self-verifying Verified Lisp
theorem prover implementations
- 7, 5N
=
".-__/3{,) verified LISP on

Milawa ARM, x86, PowerPC

Running Milawa

verified LISP on
ARM, x86, PowerPC

Milawa’s bootstrap proof:

» 4 gigabyte proof file:
>500 million unique conses

p takes 16 hours to run on a
state-of-the-art runtime (CCL)

&— hopelessly “toy”

Running Milawa

= Milawa’s bootstrap proof:
= i A

o
(“/‘_/;\%_) » 4 gigabyte proof file:
Milawa >500 million unique conses
» takes |16 hours to run on a
state-of-the-art runtime (CCL)

Jitawa: verified LISP Result:

with JIT compiler) 5 new verified Lisp which is able

to host the Milawa thm prover

work by Jared Davis

A short introdution to
o Milawa

® Milawa is styled after theorem provers
such as NQTHM and ACL2,

® has a small trusted logical kernel similar
to LCF-style provers,

® .. but does not suffer the performance
hit of LCF’s fully expansive approach.

work by Jared Davis

Comparison with LCF approach

rewriting

custom tools
SAT/SMT

FOL provers

simplifier
decision impiit

procedures rewriter case splitting

core derived rules

LCF-style approach the Milawa approach

e all proofs pass through the ¢ all proofs must pass the core
core’s primitive inferences * the core proof checker can be

e extensions steer the core replaced at runtime

work by Jared Davis

Requirements on runtime

Milawa uses a subset of Common Lisp which

is for most part first-order pure functions over
natural numbers, symbols and conses,

uses primitives: cons car cdr consp natp symbolp
equal + - < symbol-< 1f

Macros. or and list let let* cond
first second third fourth fifth

and a simple form of lambda-applications.

(Lisp subset defined on later slide.)

work by Jared Davis

Requirements on runtime

...but Milawa also

not
necessary
® forces function compilation .
| | runtime
® makes dynamic function calls must support

® can produce runtime errors

(Lisp subset defined on later slide.)

Runtime must scale

Designed to scale:

® just-in-time compilation for speed

» functions compile to native code

® target 64-bit x86 for heap capacity
» space for 23! (2 billion) cons cells (16 GB)

® efficient scannerless parsing + abbreviations
» must cope with 4 gigabyte input
® graceful exits in all circumstances

» allowed to run out of space, but must report it

Workflow o
O\L4 scrP |

40,000 ines o 1

. specified input language: syntax & semantics

. verified necessary algorithms, e.g.

® compilation from source to bytecode
® parsing and printing of s-expressions
® copying garbage collection

. proved refinements from algorithms to x86 code

. plugged together to form read-eval-print loop

AST of input language

Var string Sym string

App func (term list) Dot sexp sexp

If term term term

LambdaApp (string list) term (term list)

Or (term list)

And (term list) ()

List (term list) (macro)

Let ((string X term) list) term (macro)

LetStar ((string x term) list) term (macro)
(macro)
(macro)
()

term := Const sexp sexp = Val num

Cond ((term x term) list)
First term | Second term | Third term
Fourth term | Fifth term

func = Define | Print | Error | Funcall
| PrimitiveFun primitive | Fun string
primitive Equal | Symbolp | SymbolLess

| Consp | Cons | Car | Cdr |
| Natp | Add | Sub | Less

compile: AST — bytecode list

bytecode

Pop

PopN num
PushVal num
PushSym string
LookupConst num
Load num

Store num
DataOp primitive
Jump num
JumplfNil num
DynamicJump
Call num
DynamicCall
Return

Fail

Print

Compile

pop one stack element

pop n stack elements

push a constant number

push a constant symbol

push the nth constant from system state
push the nth stack element
overwrite the nth stack element
add, subtract, car, cons, ...

jump to program point n
conditionally jump to n

jump to location given by stack top
static function call (faster)
dynamic function call (slower)
return to calling function

signal a runtime error

print an object to stdout

compile a function definition

How do we get just-in-time compilation!?

Treating code as data:

Vpecq. {p}c{q} = {pxcodec}({q*codec}

Definition of Hoare triple:

{p}c{q} = Vsr. (pxrxcodec)s —
dn. (q *r x code ¢) (run n s)

/O and efficient parsing

Jitawa implements a read-eval-print loop:

Use of external C routines adds assumptions to proof:

® reading next string from stdin

® printing null-terminated string to stdout

Read-eval-print loop

® Result of reading lazily, writing eagerly
® Eval = compile then jump-to-compiled-code

® Specification: read-eval-print until end of input

—is_empty (get_input i0) A

next_sexp (get_input i0)) = (s, rest) A

(sexp2term s, [, k, set_input rest i0) 25 (ans, k', i0") A
is_empty (get_input 70) (k’, append_to_output (sexp2string ans) i0’) &5 10"

(k, 10) Z=5 40 (k, i0) & 0"

Correctness theorem

4 N\)
There must be enough This machine-code Hoare
memory and I/O triple holds only for
assumptions must hold. terminating executions.
_essumptons must hold. g g executions,

{init_state 7o * pc p * (terminates_for i0) }

p : code_for_entire_jitawa_implementation < list of numbers)
{ error_message V Jio’. {([],i0) &5 i0’) * final_state 70" }

/\ /\

4) 4)
Each execution is If there is no error message,
allowed to fail with then the result is described by
an error message. the high-level op. semantics.

- J - J

Verified code

$ cat verified_code.s

/*
/*

Machine code automatically extracted from a HOL4 theorem.
The code consists of 7423 instructions (31840 bytes).

.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

0x48,
0x4C,
0x48,
0x48,
0x48,
0x48,
0x4C,
0x4C,
0x4C,
0x48,
oxC7,
0x48,
oxC7,
0x48,

Ox8B,
Ox8B,
Ox8B,
Ox8B,
Ox8B,
Ox8B,
Ox8B,
Ox8B,
Ox8B,
0x01,
0x00,
0x83,
0x00,
0x83,

Ox5F,
Ox7F,
0x47,
Ox4F,
0x57,
Ox37

0x47,
Ox4F,
0x57,
oxC1

0x04,
0oxCo,
0x02,
0xCo,

0x18
0x10
0x20
0x28
0Ox08

0x60
0x68
0x58

Ox4E, 0x49, 0x4C
0x04
0x54, O0x06, 0x51
0x04

*/
*/

Running Milawa on Jitawa

Running Milawa’s 4-gigabyte booststrap process:

CCL 16 hours Jitawa’s compiler performs
SBCL 22 hours almost no optimisations.

Jitawa 128 hours (8x slower than CCL)

Parsing the 4 gigabyte input:

CCL /16 seconds (9x slower than Jitawa)
Jitawa /9 seconds

Part 4:

The end-to-end result

Proving Milawa sound

4 N
semantics of Milawa’s logic
_ J
4)
inference rules of Milawa’s logic .
rj“k_/-\ \ J proving soundness
> ,\:) Milawa theorem prover of the source code
R (kernel approx. 2000 lines of Milawa Lisp)
Milawa
[Lisp semantics j o o
itawa P .
'l , Lisp implementation (x86) verification of a Lisp
\/el”lfled (approx. 7000 64-bit x86 instructions) imP|ementation

LISP [

semantics of x86-64 machine j ®

Assumes x86 model, C wrapper, OS, hardware

Milawa theorem prover

(kernel approx. 2000 lines of Milawa Lisp)

https://raw.githubusercontent.com/HOL-Theorem-Prover/HOL/master/examples/theorem-prover/milawa-prover/core.lisp

https://raw.githubusercontent.com/HOL-Theorem-Prover/HOL/master/examples/theorem-prover/milawa-prover/core.lisp

Proving the top-level theorem

The top-level theorem:

relates the logic’s semantics
with the execution of the x86 machine code.

Steps:

A. formalise Milawa’s logic
» syntax, semantics, inference, soundness

B. prove that Milawa's kernel is faithful to the logic

» run the Lisp parser (in the logic) on Milawa’s kernel
» translate (with proof) deep embedding into shallow
» prove that Milawa’s (reflective) kernel is faithful to logic

C. connect the verified Lisp implementation
» compose with the correctness thm for Lisp system

Theorem: Milawa Is sound down to x86

/

There must be enough memory and
input is Milawa’s kernel followed by
call to main for some input.

~

J

Vinput pc.

{init_state (milawa_implementation ++ " (milawa-main ’input)") * pc pc }

pc : code_for_entire_jitawa_implementation

{ error_message V (let result = compute_output (parse input) in
(every_line line_ok result) x

-

_

Machine code terminates either
with error message, or ...

J

line_ok (m,l) = (Il ="NIL")V

(In. (I = "(PRINT (n .

t_string re;iult ++ "SUCCESS")) }

/\ final_state (ouﬁ\
Y

N\

... output lines that are all true
w.r.t. the semantics of the logic.

\

J

..))") Alis.number n) V \/

(d¢. (I = "(PRINT (THEOREM ¢))") A context_ok m A = ¢)

Final Part:

Learning from the mistakes. Doing it better.

A better compiler compiler?

The x86 for the compile function was produced as follows:

verified compiler —— [compiler]——» verified x86
as function in logic

[decompiler]

[machine-code Hoare triple]

A bit cumbersome....

...should have compiled the verified compiler using itself!

Bootstrapping the compiler

Instead: we should bootstrap the verified compile function,
i.e. evaluate the compiler on a deep embedding
of itself within the logic:

EVAL ' compile COMPILE™

derives a theorem:

compile COMPILE = compiler-as-machine-code

Y

¥

' ridge)) 1agnus M .
) (Uni. C yreen Michael Norri
ambridge) (NICTA ANrLIj)h Scott Owens
’ (Unl Kent)

Ramana Kumar

d Imp\ementation of ML

CakeML: A Verifie

s O. Myreen* 1 Michael Norrish

University of Cambridge, UK

Lab, NICTA, Australia
University of Kent, UK
\

gcott Owens 3

Magnu
1 Computer Laboratory

2 Canberra Researe
3 gchool of Computing

Ramana Kumar *

est In verified comp'ﬂation;
rofile results, many pased
4. 16, 29). This interest 18

n
high-
an unvenﬁe

a

e been signiﬁcant,
ompiler or ,
erification,

oYl
O ape fOr gener
T aons. one,
'y it of

r
Tomorrow at ICFP!

ICFps ¢

A New Verifieq Compiler Backeng for CakeMy,

Yong Kiam Ty Magnyg O. Myreep Raman, Kumar
IHPC, A*STAR, Singapore Chalmer University of Technology, Datae, CSIRO / UNSW, Australig
tanyongkiam@gmail.com Sweden

ramana.kumar@data61.csiro.au
Myreen @chalmers.se

Anthony Fox Scott Oweng Michge] Norrish etc .
University of Cambridge, UK University of Ken, UK Datag1 ~~- \ Cat‘ (@) n ’
anthony, fox@c| am.ac. yk s.a.owens@kent.ac.uk r a\ O

iste
5 target archs, reg

Abstract

ages,
. termediate languag
12 in

We h; rtetal. 2 L
end f¢ o Verified o
medjat

high-Je

Semanti,

Scott Owens Michael Norrish
co

Anthony Fox

| Ramana Kumar
Magnus M

Looking back...

2005:

I’'m a PhD student working on verification of
machine code (factorial, length of a linked list)

\/\/

\ 0707

\ Result:

A Verified Lisp Implementation for
A Verified Theorem Prover

\

2005:

I’'m a PhD student working on verification of
machine code (factorial, length of a linked list)
\4 basic reasoning about real machine code
powerful automation
\4 verification of garbage collectors
\ synthesis from (abstract) functional specs
\4 verified Lisp interpreters

verified just-in-time compiler for Lisp

Result:

A Verified Lisp Implementation for
A Verified Theorem Prover

QueStionS? \ verified compiler bootstrapping (ML)

Thank you for inviting me!

Intuition for Bootstrapping

Proof-producing synthesis Verified compiler backend

SRR | ST | GTLIE | S
Verified parsing Verified type inferem
el |B — N E Ny — e 'C Y388 — typeable yes/no

Intuition for Bootstrapping

&

el |B — N E Ny — e 'C Y388 — typeable yes/no

HOL functions

linput
HOL functions gmdl CakeML AST Emd CakeML AST —>

l output

verified x86 implementation of parsing, type inference, and compilation

