
Syntax Templates in Racket

RYAN CULPEPPER, Czech Technical University in Prague

One foundation of Scheme macro systems is the notation of syntax patterns and templates. Patterns are used to match and
destructure terms, and templates are used to construct new terms. This paper presents extensions to Racket’s template notation
to support template splicing, conditional generation, and template metafunctions. The new template features complement
syntax-parse’s previous extensions to the pattern-matching notation.

1 INTRODUCTION
Macro-by-Example (Kohlbecker and Wand 1987) is the foundation of the major Scheme macro notations, such as
syntax-rules (Kelsey et al. 1998) and syntax-case (Dybvig et al. 1992; Sperber et al. 2009b). MBE specifies a
pattern-based notation for defining macro transformations. A macro has a list of clauses, each clause consisting
of an input pattern and an output template.1 When the expander encounters a use of a macro, it tries each clause
in order, and if the use matches an input pattern, code is emitted by instantiating the corresponding template
with the pattern’s variables bound to the appropriate subterms of the macro occurrence. For example, it allows
the transformation of let into the immediate application of a lambda to be expressed thus:2

(define-syntax-rule (let ((i e) ...) b ...)
((lambda (i ...) b ...) e ...))

instead of thus:

(defmacro let (decls . body)
`((lambda ,(map car decls) . ,body)

. ,(map cadr decls)))

In the pattern and template above, the ellipsis (...) indicates repetition. In a pattern, it matches a sequence of
terms, each of which must match the preceding subpattern, and the subpattern’s variables’ values are collected
together. For example, if the let macro above is used as (let ([x 1] [y 2] [z 3]) (+ x (* y z))), the
pattern variable i is bound to the sequence of terms x, y, and z, and the pattern variable e is bound to the sequence
of terms 1, 2, and 3. In a template, an ellipsis produces a sequence of terms, each of which is constructed by
instantiating the preceding subtemplate by implicitly mapping the subtemplate over the corresponding variables’
values. Thus the template for let would be instantiated as ((lambda (x y z) (+ x (* y z))) 1 2 3).

Over time, the template language has accumulated extensions such as ellipsis escaping and multiple-ellipsis
flattening (Dybvig 2003; Dybvig and Waddell 2016), and the representation of Scheme terms has changed from
simple S-expressions to syntax objects, requiring the reinterpretation of MBE for the new term representation.

Around 2007, Racket added keywords (Flatt 2007), and since then it has become more common for Racket syntax
to include non-parenthesized logical components, usually introduced or delimited by keywords. For example,
here is a structure declaration:

(struct point (x y) #:property prop:custom-write print-point #:transparent)

1The original paper called these “input patterns” and “output patterns.” The Scheme reports, starting with Clinger and Jonathan Rees
(eds.) (1991), use the “pattern” and “template” terminology.
2Examples in this paper use Racket’s macro-definition forms, including define-syntax-rule and syntax-parse.

Author’s address: Ryan Culpepper Czech Technical University in Prague, ryanc@racket-lang.org.



2 • Ryan Culpepper

The #:property prop:custom-write print-point clause attaches a struct type property that controls printing;
the #:transparent clause affects equality and hashing.

As another example, here is some code for processing command-line options and arguments, adapted from the
implementation of the raco scribble command (___ represents omitted code):
(command-line #:program (short-program+command-name)
#:once-any
[("--html") "generate HTML-format output file (the default)" ___]
[("--pdf") "generate PDF-format output (via PDFLaTeX)" ___]
#:once-each
[("--dest") dir "write output in <dir>" ___]
#:multi
[("++style") file "add given .css/.tex file after others" ___]
#:args (file) ___)

The #:once-any, #:once-each, and #:multi keywords control how subsequent command-line flags are used.
The implicit grouping is generally obvious to programmers. But it’s cumbersome to parse using syntax-case.
Consequently, syntax-parse (Culpepper 2012) introduces an extended notion of patterns designed to accom-

modate syntaxes like the ones above. For example, a struct property clause can be described with the following
pattern:
(∼seq #:property prop:expr value:expr)

This kind of pattern is called a head pattern, because instead of matching a single term, it matches a sequence of
terms from the head of a syntax list.

In the pattern above, ∼seq forms a head pattern that matches a sequence containing the following subpatterns,
#:property is a keyword literal, and :expr is a syntax class annotation that says the preceding pattern variable
matches only an expression (really, anything except a keyword). A syntax class is like a nonterminal for the
pattern language; it encapsulates a pattern together with optional side condition checks, attribute computations,
etc.
Similarly, the syntax of command-line can be described by the following pattern:
(_ n:maybe-name a:maybe-argv clause:flag-clause ... final:final-clause)

with some auxiliary syntax classes such as
(define-splicing-syntax-class maybe-name
(pattern (∼optional (∼seq #:program name:expr))))

(define-splicing-syntax-class flag-clause
(pattern (∼seq #:once-any e:flag-entry ...) #:attr kind 'once-any)
___)

and so on. Splicing syntax classes encapsulate head patterns, and thus match sequence of terms, in contrast to
normal syntax classes, which encapsulate normal (single-term) patterns. An ∼optional pattern tries to match its
subpattern, but if that fails it matches an empty sequence of terms and the subpattern’s variables are considered
“absent”. An #:attr clause creates an attribute whose value is computed when an instance of the syntax class is
parsed, and the user of a syntax class can inspect its attributes. Pattern variables are essentially attributes that
contain syntax objects (or lists of syntax objects for pattern variables in front of ellipses, and so on), but attributes
can also carry compile-time AST structures, procedures to check context-sensitive constraints, and more.
The extended patterns supported by syntax-parse have proven useful. But they created an imbalance of

expressiveness between patterns and templates. In particular, the examples above raise the following questions:



Syntax Templates in Racket • 3

• How can templates produce non-parenthesized groups of terms?
• How can templates gracefully process “absent” pattern variables?
• How can computation be embedded in template instantiation, similar to how syntax classes and attributes
allow embedding computation in pattern matching? (Specifically, quasisyntax is not sufficient, because it
does not cooperate with ellipses.)

Each of these questions above motivates a new template feature. Section 2 introduces the new template features
through examples. Section 3 gives an updated grammar of templates, and Section 4 describes the meaning and
implementation of the extended template language.

2 NEW TEMPLATE FEATURES
This section introduces three new template features and gives examples that show how they interact with existing
template features (mainly ellipses) and also how they interact with each other.

2.1 Splicing
The first extension allows a template to produce a non-parenthesized sequence of terms. Of course, it’s trivial to
produce, say, three non-parenthesized terms by writing a non-parenthesized group of three templates. But when
a sequence of such groups must be produced, a more specialized feature is needed.
Consider Racket’s hash function. It constructs a hash table from an argument list that contains alternating

keys and values. For example, (hash 'a 1 'b 2 'c 3) has keys 'a, 'b, and 'c mapped to values 1, 2, and 3,
respectively.

Suppose we want to write a macro kw-hash that takes keys in keyword form and produces a hash table with
symbol keys. For simplicity, we’ll do the actual conversion of keywords to symbols at run time. For example:

(kw-hash #:a 1 #:b 2 #:c 3)
⇒ (hash (keyword->symbol '#:a) 1 (keyword->symbol '#:b) 2 (keyword->symbol '#:c) 3)

The macro pattern can be written as follows:

(_ (∼seq key:kw value:expr) ...)

But how can we construct a sequence of alternating (transformed) key and value expressions?
Previously, it required escaping to Racket. One way is to do the list manipulation by hand:

(define-syntax (kw-hash stx)
(syntax-parse stx
[(_ (∼seq key:kw value:expr) ...)
(with-syntax ([(arg ...)

(apply append
(map list

(syntax->list #'((keyword->symbol (quote key)) ...))
(syntax->list #'(value ...))))])

#'(hash arg ...))]))

Another is to use multiple-ellipsis flattening, a common extension to MBE, where a template followed by multiple
ellipses concatenates the results of the inner maps together without parentheses. For example:

(define-syntax (kw-hash stx)
(syntax-parse stx
[(_ (∼seq key:kw value:expr) ...)
(with-syntax ([([arg ...] ...) #'([(keyword->symbol (quote key)) value] ...)])



4 • Ryan Culpepper

#'(hash arg ... ...))]))

Racket’s new template splicing form, written ∼@, eliminates the need for the auxiliary with-syntax binding
and artificial extra ellipsis:

(define-syntax (kw-hash stx)
(syntax-parse stx
[(_ (∼seq key:kw value:expr) ...)
#'(hash (∼@ (keyword->symbol (quote key)) value) ...)]))

Note: the splicing form generalizes multiple-ellipsis flattening in the following sense: (T ... ...) is equivalent
to ((∼@ T ...) ...).

The general form of a ∼@ template is (∼@ . template); that is, the tail of the ∼@-template is interpreted as a
subtemplate. The subtemplate must result in a proper syntax list (otherwise an error is signaled), and the contents
are spliced into the enclosing template’s instantiation. For example:

(with-syntax ([name #'point]
[(fld ...) #'(x y)]
[(clause ...)
#'((#:property prop:custom-write print-point)

(#:transparent))])
#'(struct name (fld ...) (∼@ . clause) ...))

⇒ #'(struct point (x y) #:property prop:custom-write print-point #:transparent)

This allows, for examples, syntax classes to compute clauses by treating them as parenthesized terms; the macro
can splice them in the template.

2.2 Try/Catch
The second extension provides better handling for absent pattern variable values.

The syntax-parse system provides the attribute form for directly accessing the value of an attribute. A
pattern variable is just an attribute that normally contains a syntax object (or list thereof, etc). An absent pattern
variable contains the value #f instead, and attempting to instantiate a template with an absent pattern variable
raises an error. (Note that in Racket #f is distinct from a syntax object containing the value #f.)

Thus one way to handle absent pattern variables is to insert explicit checks using attribute:

(define-syntax (command-line stx)
(syntax-parse stx
[(_ n:maybe-name ___)
(with-syntax ([name (or (attribute n.name) #'"unknown program")])
#'(___ name ___))]))

But this is cumbersome and—like all solutions outside of the template system—it interacts poorly with ellipses.
Another approach is to change the pattern so that the attribute is always defined. For example, we could define

maybe-name thus:

(define-splicing-syntax-class maybe-name
(pattern (∼seq #:program name:expr))
(pattern (∼seq) #:with name #'"unknown program"))

The same effect can be achieved with ∼optional by specifying defaults:

(∼optional (∼seq #:program name:expr) #:defaults ([name #'"unknown program"]))



Syntax Templates in Racket • 5

The flaw in this approach is small: it pushes a bit of the interpretation of the syntax from the template into
the pattern. On the one hand, the option of moving interpretation into patterns is why syntax classes support
attributes; on the other hand, it is irritating to be forced into that style of programming due to deficiencies in the
template notation.

Racket’s “try/catch” template form, written ∼?, solves this problem. A ∼? template initially tries to instantiate
its first subtemplate. If that fails because of an absent pattern variable, it instantiates its second subtemplate
instead. Using ∼? the fragment above can be rewritten as follows:
(define-syntax (command-line stx)
(syntax-parse stx
[(_ n:maybe-name ___)
#'(___ (∼? n.name "unknown program") ___)]))

This template form can be used together with the splicing form. For example, consider a call-with-lock
procedure that takes a lock, a thunk to be called with the lock acquired, and an optional #:fail keyword argument
with a failure thunk. We can write a with-lock “thunking” macro as follows:
(define-syntax (with-lock stx)
(syntax-parse stx
[(_ lock:expr (∼optional (∼seq #:fail fail:expr)) body:expr ...+)
#'(call-with-lock lock

(lambda () body ...)
(∼? (∼@ #:fail (lambda () fail)) (∼@)))]))

If the macro does not receive a #:fail keyword argument, it omits the argument to the procedure call entirely.
Thus the macro doesn’t need to duplicate the default handling done by the procedure.

It is common—as in the macro above—for a ∼? template’s alternative branch to produce nothing at all. For
convenience, the template (∼? T (∼@)) can be abbreviated (∼? T).

2.3 Metafunctions
The third extension allows computation to be embedded within template instantiation.

Recall the kw-hash macro from section 2.1. For simplicity, we converted the keywords from the input into
symbols at run time. What if we wanted to do that computation at compile time instead?

Such compile-time computation is typically done within with-syntax clauses—or by pushing the computation
into patterns or syntax classes, where it may not necessarily belong. An alternative is to move the computation
into the template itself using a template metafunction.3 For example, here is a metafunction that expects a single
keyword argument and converts it to an identifier:
(begin-for-syntax
(define-metafunction (Keyword->Identifier stx)
(syntax-parse stx
[(_ k:kw) (datum->syntax #'k (keyword->symbol (syntax-e #'k)))])))

Using the metafunction, we can rewrite kw-hash as follows:
(define-syntax (kw-hash stx)
(syntax-parser
[(_ (∼seq key:kw value:expr) ...)
#'(hash (∼@ (quote (Keyword->Identifier key)) value) ...)]))

3Template metafunctions were inspired by the metafunctions of Redex (Felleisen et al. 2009).



6 • Ryan Culpepper

This example also demonstrates the cooperation of metafunctions and ellipses.
If a syntax pattern variable is just like a variable whose name is marked so that the syntax form knows to

replace its occurrences in a template, likewise a template metafunction is just like a function whose name is
marked so the syntax form knows to apply it. The function is given syntax and must produce syntax; it is applied
to the result of instantiating the subtemplate, and the value it returns is the result of the metafunction template.

A metafunction is typically defined within a begin-for-syntax block so that it can be used in the implemen-
tation of a macro. The implementation of a macro is a compile-time (or “phase 1”) expression; thus the templates
it contains are compile-time expressions, thus they search the compile-time environment to recognize special
identifiers such as ..., ∼@, and the names of metafunctions. Note that unlike define-syntax, the name of the
metafunction exists at the same phase level as the implementation. That is, the following are equivalent:

(define-template-metafunction (MF stx) body)
⇔ (begin (define-template-metafunction (MF stx) (mf-helper stx))

(define (mf-helper stx) body))

Another common kind of compile-time computation is the synthesis of new identifiers based on macro
arguments. For example, here is a macro that defines a struct type property, automatically defining the predicate
and accessor names based on the given property name:

(define-struct-property prop:connection)
⇒ (define-values (prop:connection prop:connection? prop:connection-value)

(make-struct-type 'prop:connection))

It could be implemented with a helper metafunction like the following, which joins multiple identifiers into one
using the lexical context (hygiene information) from the first identifier.

(begin-for-syntax
(define-template-metafunction (Join stx)
(syntax-parse stx
[(_ a:id b:id ...)
(datum->syntax #'a

(string->symbol
(apply string-append

(map symbol->string
(syntax->datum #'(a b ...))))))])))

Using the Join metafunction, we can define define-struct-property thus:

(define-syntax (define-struct-property stx)
(syntax-parse stx
[(_ name)
#'(define-values (name (Join name ?) (Join name -value))

(make-struct-type-property (quote name)))]))

We can add an optional argument to the metafunction that lets the user specify what syntax object to draw the
lexical context from when creating the new identifier. And we can use ∼optional and ∼? to match and process
the optional argument:

(begin-for-syntax
(define-template-metafunction (Join stx)
(syntax-parse stx



Syntax Templates in Racket • 7

[(_ (∼optional (∼seq #:lctx lctx)) a:id b:id ...)
(datum->syntax #'(∼? lctx a) ___ same as above ___)])))

With this version, we could implement the name synthesis for a form like define-struct:

(define-syntax (define-struct stx)
(syntax-parse stx
[(_ name:id (fld:id ...) ___)
#'(define-values ((Join #:lctx name make- name) (Join name ?) (Join name - fld) ...)

___)]))

Metafunctions can be recursive. For example, several syntactic forms in Racket have * variants where each
clause is in the scope (static or dynamic) of the preceding clause. Here is a metafunction that helps implement
such forms via a syntactic Fold over the clause list:

(begin-for-syntax
(define-template-metafunction (Fold stx)
(syntax-parse stx
[(_ op (arg0 . args) base) #'(op arg0 (Fold op args base))]
[(_ op () base) #'base])))

(define-syntax (let* stx)
(syntax-parse stx
[(_ ([var:id rhs:expr] ...) body:expr ...+)
#'(Fold let (([var rhs]) ...) (let () body ...))]))

(define-syntax (parameterize* stx)
(syntax-parse stx
[(_ ([param:expr rhs:expr] ...) body:expr ...+)
#'(Fold parameterize (([param rhs]) ...) (let () body ...))]))

3 THE TEMPLATE LANGUAGE
This section gives a semi-formal description of the extended template language. This section also discusses some
issues that, while not novel, affect the implementation of templates in Racket.

3.1 Templates and Head Templates
The Scheme reports (Clinger and Jonathan Rees (eds.) 1991; Kelsey et al. 1998; Shin et al. 2013; Sperber et
al. 2009a) specify templates through two nonterminals: “templates” and “template elements”—the latter is a
template followed by zero or more ellipses. We generalize this distinction to templates and head templates. When
instantiated, a template yields a single term; a head template yields a sequence of terms (not a term that contains
a list).
The following grammar describes the syntax of templates (T) and head templates (H):

T = PVar
| Literal
| (... T)
| (H . T)
| (∼? T T)
| (MF . T)

H = T
| H ...
| (∼@ . T)
| (∼? H H)
| (∼? H)

PVar = pattern variable

MF = metafunction identifier

Literal = other identifier or atomic datum



8 • Ryan Culpepper

Pattern variables, literals (including ()), and ellipses are standard. Note that the definition of H allows ellipses
to follow any head template, including one that already has ellipses. The form (... T) is an ellipsis escape—within
the subtemplate, occurrences of ..., ∼@, and ∼? are treated as literals.
The head of a pair template is a head template (thus the name). Ellipses form head templates, and they are

allowed to follow arbitrary head templates, including those that already have trailing ellipses. The splicing form
(∼@) is a kind of head template, because it must occur at the head of a syntax list. For example, (1 . (∼@ 2 3))
is not a syntactically valid template. On the other hand, ((∼@ . 1) 2) is syntactically valid, although it will
raise an error on instantiation.

This grammar is ambiguous: the template (T1 ... T2) could be interpreted like T1 ... followed by T2—that
is, with the ellipses representing repetition—or like (T1 . (... T2))—that is, with the ellipses used to escape
T2. Such ambiguities are always interpreted as repetition, not escaping.

A second problem with this grammar is that it describes S-expression structure, but it is important for syntax
templates to correctly handle syntax object structure. This is especially true in Racket, which relies on a specific
discipline of syntax object placement and the preservation of information from templates to instantiations.

3.2 Syntax Objects
To support their hygienic expansion algorithm, Dybvig et al. (1992) introduced a new data type for representing
terms: the syntax object. (In this paper, I use the term syntax object in the Racket sense, which corresponds to
what R6RS calls a wrapped syntax object (Sperber et al. 2009a).) Roughly, the new term representation consists of
S-expressions enriched with syntax metadata (“wrappings”) that carry information for the hygiene algorithm.
Different Schemes have chosen different disciplines for where syntax objects occur and when they are introduced
by the reader and macro expander. For example, the portable syntax-case implementation (Dybvig and Waddell
2016) uses them sparingly, only when they are needed for the correctness and efficiency of the hygiene algorithm.
In contrast, Racket uses them more and with a specific placement discipline, and its support for language-

oriented programming relies heavily on that discipline. For example, Racket uses the hygiene information (or
“lexical context”) attached to the first pair of a function application form to look up the implicit #%app macro
used to expand the application. This mechanism gives Racket language modules control over the meaning of
application; for example, the racket language provides an application syntax that handles keyword arguments,
and the lazy language provides an application syntax that forces the operator and delays the arguments. Similarly,
there is an implicit #%datum macro that handles atomic literals; racket’s default implementation expands into
quote. Racket also extends syntax metadata to include source locations and arbitrary syntax properties as an
additional communication channel between macros, the expander, and other language tools.

For pattern-based macros to work correctly with the expander’s hygiene algorithm, syntax metadata must be
propagated from template to the syntax its produces. For example, instantiating the template (f X), where X is a
pattern variable, must propagate the metadata on f. In Racket, it must also propagate the metadata on the list
structure (f _), so that Racket can determine the correct application syntax transformer to use. In contrast, the
metadata on X should not be propagated to the term substituted for X. Similarly, in the template (Y ...) the
metadata on the ellipsis identifier is not propagated, but the metadata on the whole template is.

To be precise, let us write (mkstx W C) for a syntax object wrapping the pair or atom C with syntax metadata
W. The following grammar describes the constraints Racket places on syntax objects—specifically, where the
syntax nodes occur; we leave the structure of metadata (W) unspecified:

Syntax = (mkstx W Atom)
| (mkstx W (cons Syntax StxList))

StxList = '()
| Syntax
| (cons Syntax StxList)



Syntax Templates in Racket • 9

Racket’s read-syntax procedure places syntax nodes (mkstx constructors) around every complete S-expression.
For example, read-syntax produces different syntax objects for the following two S-expression notations usually
considered equivalent:

(1 2) ⇒ (mkstx _ (cons (mkstx _ 1) (cons (mkstx _ 2) '())))
(1 2 . ()) ⇒ (mkstx _ (cons (mkstx _ 1) (cons (mkstx _ 2) (mkstx _ '()))))

On the other hand, datum->syntax inserts the fewest syntax nodes necessary to produce a value valid according
to Syntax. So (datum->syntax #f '(1 2)) produces a value with the shape of the first line above.

The template written (f X) is represented in Racket as the following syntax object:

(mkstx Wp (list (mkstx Wf 'f) (mkstx Wx 'X)))

When X is bound to val-of-X (which must also be a syntax object), instantiating the template produces the
following syntax:

(mkstx Wp (list (mkstx Wf 'f) val-of-X))

In the rest of the paper, we will drop the metadata field in examples intended to illustrate only the placement
of syntax objects—for example, (mkstx '()) instead of (mkstx _ '()) or (mkstx W '()).

3.3 Variables and Ellipses
In order for a template to be legal, it must not only follow the grammar from Section 3.1, it must also use variables
and ellipses correctly. These rules are standard; we repeat them here for completeness.

A variable must be used at a depth at least as great as the depth where it was bound. A variable use’s depth is
the number of ellipses it occurs within. For example, in the template (X (Y (Y Z) ...) ...), X occurs at depth
0, the first Y occurs at depth 1, and the second Y and the Z occur at depth 2. The following example is illegal:

(with-syntax ([(X ...) ___]) #'X)

because X is bound at depth 1 and used at depth 0.
An ellipsis must have at least one participating variable. A variable participates in an ellipsis’s iteration if the

variable occurs relative to the ellipsis template at a depth less than or equal to its binding depth. For example, the
following example is illegal:

(with-syntax ([(X ...) ___]) #'((X ...) ...))

because the outer ellipsis has no participating variables; the occurrence of X occurs at depth 2 with respect to the
outer ellipsis, and X is bound at depth 1.
Note that the following template is—perhaps surprisingly—legal:

(with-syntax ([(X ...) ___]) #'((X X ...) ...))

Both occurrences of X occur at depth at least 1, and both ellipses have an occurrence of X driving the iteration. A
variable used at a depth greater than its binding depth participates in the innermost iterations.4

Note that template instantiation may fail even for a valid template, if an ellipsis has multiple iteration variables
bound to lists of different lengths.

4 TEMPLATE INSTANTIATION
This section describes the meaning of templates via compilation.
4I don’t know why this behavior was chosen. On the one hand, it is incompatible with the straightforward instantiation algorithm from the
original MBE paper. On the other hand, it means that a valid template doesn’t change meaning when placed in some (valid) template context.



10 • Ryan Culpepper

4.1 Abstract Syntax
The following grammar describes abstract syntax trees for templates (T) and head templates (H):

T = (t:restx Syntax T)
| (t:var Id)
| (t:const Atom)
| (t:append H T)
| (t:orelse T T)
| (t:metafun Id Syntax T)

H = (h:t T)
| (h:dots H MapVars)
| (h:splice T)
| (h:orelse H H)

MapVars = (list (cons Id Id) · · · )

The t:var, t:const, t:append, t:orelse, and t:metafun variants correspond directly to the pattern variable,
literal, pair, try/catch, and metafunction productions of the grammar from Section 3.1. Escaped templates do not
need an AST node; escaping only affects parsing.

The pattern variable environment maps pattern variable names to two pieces of information: the ellipsis depth
from the variable’s binding and an identifier referring to an ordinary variable that holds the pattern variable’s
value. In the examples, we write X-var to refer to the ordinary variable holding the value of pattern variable X. If
X is a depth-0 pattern variable, an occurrence of X is represented by (t:var X-var). For pattern variables of
higher depth, the t:var node contains an iteration variable from the enclosing h:dots.
A h:dots node stores an association list mapping list-valued “source” variables to iteration variables, and

pattern variables within the ellipsis template with non-zero depth are represented as t:var nodes with the
iteration variable name. For example, if X has depth 1 and Y has depth 0, the template ((X Y) ...) has an AST
like the following:

(t:restx _
(t:append
(h:dots
(h:t (t:append (h:t (t:var X-iter1-var))

(t:append (h:t (t:var Y-var))
(t:const '()))))

(list (cons X-var X-iter1-var)))
(t:const '())))

The ASTs for nested ellipses must use distinct iteration variables for uses of the same pattern variable at different
levels, such as the two Xs in ((X X ...) ...), where X has depth 1.

A t:metafun node contains a reference to the metafunction’s implementation, the syntax of the metafunction
call in the original template, and the “argument” subtemplate. The call syntax is used to construct the syntax
passed to the metafunction; like a macro, a metafunction gets a single syntax argument that begins with the
metafunction’s own name.
A t:restx (“re-syntax”) AST node represents a syntax object in the template whose metadata must be

propagated to the template’s result during instantiation. Recall from section 3.2 that not all syntax objects in
templates cause metadata propagation. Here are some examples:

• The template written (X) is represented by the syntax (mkstx (list (mkstx 'X))).
It parses as (t:restx _ (t:append (h:t (t:pvar X-var)) (t:const '()))).

• The template written (X . ()) is represented by the syntax (mkstx (cons (mkstx 'X) (mkstx '()))).
It parses as (t:restx _ (t:append (h:t (t:pvar X-var)) (t:restx _ (t:const '())))).

• The template written (∼? X Y) is represented by (mkstx (list (mkstx '∼?) (mkstx 'X) (mkstx
'Y))), and it is parsed as (t:orelse (t:var X-var) (t:var Y-var)).



Syntax Templates in Racket • 11

; compile-t : Template -> (Expressionof Syntaxish)
(define (compile-t t)

(match t
[(t:restx stx t) `(restx (quote-syntax ,stx) ,(compile-t t))]
[(t:var var) `(check-syntax ,var)]
[(t:const datum) `',datum]
[(t:append h t) `(append ,(compile-h h) ,(compile-t t))]
[(t:orelse t1 t2) `(orelse (lambda () ,(compile-t t1)) (lambda () ,(compile-t t2)))]
[(t:metafun mf stx t)
`(apply-metafun ,(metafunction-var mf) (quote-syntax ,stx) ,(compile-t t))]))

; compile-h : HeadTemplate -> (Expressionof (Listof Syntax))
(define (compile-h h)

(match h
[(h:t t) `(list ,(compile-t t))]
[(h:splice t) `(check-splice ,(compile-t t))]
[(h:orelse h1 h2) `(orelse (lambda () ,(compile-h h1)) (lambda () ,(compile-h h2)))]
[(h:dots h mapvars)
(define vars (map cdr mapvars))
(define srcs (map (lambda (src) `(check-list ,src)) (map car mapvars)))
`(apply append (map (lambda ,vars ,(compile-h h)) ,@srcs))]))

Fig. 1. Compiling template ASTs

The template written (∼? X . (Y)) is represented by (mkstx (cons (mkstx '∼?) (cons (mkstx 'X)
(mkstx (list (mkstx 'Y)))))), but it is parsed into exactly the same AST as the first version. Essentially,
the extra syntax node is on part of the argument list to ∼?, not on a subtemplate itself.

• Likewise, (X ...) and (X . (...)) also have the same ASTs.

4.2 A Naive Implementation
Figure 1 shows a simple compiler from template ASTs to Scheme/Racket code. It assumes that names such as
quote and append have their standard bindings, and it relies on helper functions such as restx, orelse, and
check-syntax, some of which are shown in figure 2.
We use quote for literal atoms and quote-syntax for literal syntax objects. In restx, we use the third and

fourth arguments to Racket’s datum->syntax transfer source location and syntax properties from the original
template syntax to the instantiation.

Due to syntax-parse’s generalization of pattern variables to allow absent values and values other than syntax,
pattern variable references, including the references in ellipsis maps, must be checked for proper values. Checking
is done one level at a time so that handling of absent values occurs at the right place.5 For example, consider the
template ((∼? X Y) ...); in each iteration, X may be present or absent, independent of its presence or absence
in other iterations. When a checking helper function detects an absent variable value, it calls a handler that
escapes to the nearest enclosing orelse; if there is no enclosing orelse, the handler raises an error. The handler

5The implementation in Racket also allows promises, which are forced during checking.



12 • Ryan Culpepper

; restx : Syntax Any -> Syntax
(define (restx stx v) (datum->syntax stx v stx stx))

; apply-metafun : (Syntax -> Any) Syntax Syntaxish -> Syntax
(define (apply-metafun mf stx v)

(define result (mf (datum->syntax stx (cons (stx-car stx) v))))
(if (syntax? result) result) (error ___))

; current-absent-handler : (Parameterof (-> (escapes)))
; check-{list,syntax} and orelse cooperate via this handler for absent variables
(define current-absent-handler (make-parameter (lambda () (error ___))))

; check-list : Any -> List (or escapes)
(define (check-list v)

(if (list? v) v (if (not v) ((current-absent-handler)) (error ___))))

; check-syntax : Any -> Syntax (or escapes)
(define (check-syntax v)

(if (syntax? v) v (if (not v) ((current-absent-handler)) (error ___))))

; orelse : (-> X) (-> X) -> X, where X is either Syntax or (Listof Syntax)
(define (orelse proc1 proc2)

((let/ec escape
(parameterize ((current-absent-handler (lambda () (escape proc2))))
(let ([result1 (proc1)]) (lambda () result1))))))

Fig. 2. Helper functions for compiled templates

could also be implemented using a standard exception system with a new exception subtype. Note that ∼? only
catches absent variables, not other errors like splicing a non-list or mismatches in ellipsis variable lengths.
Metafunction application combines the result of instantiating the argument template with the original meta-

function identifier to form the syntax object that gets passed to the metafunction’s implementation.

4.3 Implementation Improvements
The implementation above is straightforward, but there are many ways it can be improved.

Eliminate useless variable checks. The possibility of absent or bad syntax variable values only arises from
a few features of syntax-parse. Pattern variables bound using those features are marked as needing checks,
and the template compiler can omit checks from other pattern variables, including all variables bound using
syntax-case and syntax-rules.
Prune syntax constants. The syntax constants passed to restx are used only as a source of their lexical con-

text, source location, and syntax properties; their contents don’t matter. Instead of storing the whole (potentially
large) syntax object stx, the metadata can be transferred to a small syntax object, such as (datum->syntax stx
'STX stx stx), and that can be stored instead. Likewise, the syntax constant for a metafunction application can
be trimmed to the outer list and its first element (the metafunction identifier).



Syntax Templates in Racket • 13

Recognize lists. The naive compiler, following the naive AST design, gleefully produces code of the form
(append (list _) _) for every simple pair template. These can be peephole-optimized during compilation, but
it is helpful for other optimizations to add new AST variants for these: t:list and t:list*.

Coalesce syntax constants. Given a constant template like (lambda (x) 1), the naive compiler produces
code that builds the term up from atomic pieces. Instead, it should recognize that the whole template is a syntax
constant. We overload t:const to store both atomic data and syntax constants; the latter is compiled using
quote-syntax rather than quote.
Recognize single-term ellipsis subtemplates. In general, the subtemplate of an ellipsis is a head pattern;

most often, however, it is an h:t with an ordinary template. By specializing that case, the compiler can omit a
(list _) wrapper within the map and an (apply append _) outside of it.

Specialize (X ...) Furthermore, if the subtemplate of an ellipses is just a pattern variable, and if the pattern
variable is “trusted” (its list and syntax checks can be omitted), then the entire map expression can be eliminated,
since the variable already stores a list of syntax values.

4.4 Substitution: Optimizing for Space
One of my goals for the new template implementation was to avoid increasing the size of compiled templates—that
is, the size of the serialized bytecode. In addition to the optimizations listed above, there is another optimization
that was important for keeping compile sizes no larger than the previous implementation.

It is generally more efficient for Racket to serialize one large syntax constant (quote-syntax expression) than
to serialize its components individually. Roughly, the hygiene algorithm and bytecode serializer face time/space
trade-offs in sharing syntax metadata, and less sharing occurs across different syntax constants.
Consider the template (define X 10). With the optimizations discussed in the previous section, the corre-

sponding AST and generated code would be the following:

(t:restx (mkstx ___)
(t:list (list (t:const (mkstx define)) (t:var X-var) (t:const (mkstx 10)))))

⇒ (restx (quote-syntax STX)
(list (quote-syntax define) X-var (quote-syntax 10)))

But we can treat it instead as a “starting point” syntax constant together with substitution instructions to be
performed during template instantiation, as follows:

(t:subst (mkstx (list (mkstx 'define) (mkstx '_) (mkstx 10)))
(list (sub:skip) (sub:elem (t:var X-var))))

⇒ (subst (quote-syntax (define _ 10)) 1 'elem X-var)

The subst procedure takes a syntax object containing a (possibly improper) list and processes each element in
the list. An element can be retained as a constant ((sub:const)), replaced with a single element generated by a
template ((sub:elem T)), or replaced with a sequence of elements generated by a head template ((sub:append
H)). If the template has an improper tail that is not constant, such as the template (let () . BODY), the tail can
be replaced with the result of its template using (sub:tail T).
We can achieve even more sharing by building recursion into our little substitution interpreter. For example,

consider the template (if (PRED x) x #f). Without explicit support for recursion, that can be expressed as
two nested substitutions:

(t:subst (mkstx (list (mkstx 'if) (mkstx '_) (mkstx 'x) (mkstx #f)))
(list (sub:skip)

(sub:elem (t:subst (mkstx (list (mkstx '_) (mkstx 'x)))
(list (sub:elem (t:var 'PRED-var)))))))



14 • Ryan Culpepper

T = ....
| (t:const Syntax)
| (t:list (list T · · · ))
| (t:list* (list T · · · ) T)
| (t:subst Syntax (list Subst · · · ))

Subst = (sub:const)
| (sub:elem T)
| (sub:append H)
| (sub:tail T)
| (sub:recur-elem (list Subst · · · ))
| (sub:recur-tail (list Subst · · · ))

Fig. 3. Extended abstract syntax

When an element’s subtemplate is another substitution node, we can merge the inner starting point syntax to its
original position in the outer starting point and use sub:recur-elem with the inner list of substitutions:

(t:subst
(mkstx (list (mkstx 'if) (mkstx (list (mkstx '_) (mkstx 'x))) (mkstx 'x) (mkstx #f)))
(list (sub:skip) (sub:recur-elem (list (sub:elem (t:var PRED-var))))))

When the subst interpreter sees 'recur-elem, it recurs with the subsequent list of substitutions, using the
current element as the starting point of the recursive call.
Figure 3 gives a summary of the changes to the template IR. We have essentially arrived at a hybrid com-

piler/interpreter approach. In fact, an earlier implementation of this template language simply used interpreter
for every template variant, but managing the explicit environment data structures for ellipsis iterations—and
making it reasonably fast—was a headache, and the code was inelegant. Racket is better at managing variables
and environments than I am.

5 CONCLUSION
This paper presents three extensions to the syntax templates of Scheme and Racket. These extensions complement
syntax-parse’s extension to syntax patterns, which were themselves motivated by Racket’s introduction of
keywords and nonparenthesized grouping in syntactic forms. The new features are straightforward to implement.

ACKNOWLEDGMENTS
This project has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 695412).

BIBLIOGRAPHY
William Clinger and Jonathan Rees (eds.). Revised4 Report on the Algorithmic Language Scheme. 1991. http://www.

scheme-reports.org/
Ryan Culpepper. Fortifying macros. Journal of Functional Programming 4-5(22), pp. 224–243, 2012.
R. Kent Dybvig. The Scheme Programming Language. 3rd edition. MIT Press, 2003. https://www.scheme.com/tspl3/ Section 8.2

discusses macro templates.
R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic Abstraction in Scheme. Lisp and Symbolic Computation 5(4), pp.

295–326, 1992. http://dx.doi.org/10.1007/BF01806308
R. Kent Dybvig and Oscar Waddell. Pre-R6RS Portable syntax-case. 2016. No longer online. Retrieved from https://web.archive.

org/web/20160414073020/http://www.cs.indiana.edu/syntax-case/old-psyntax.html.
Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engineering with PLT Redex. 1st edition. The MIT

Press, 2009.

http://www.scheme-reports.org/
http://www.scheme-reports.org/
https://www.scheme.com/tspl3/
http://dx.doi.org/10.1007/BF01806308
https://web.archive.org/web/20160414073020/http://www.cs.indiana.edu/syntax-case/old-psyntax.html
https://web.archive.org/web/20160414073020/http://www.cs.indiana.edu/syntax-case/old-psyntax.html


Syntax Templates in Racket • 15

Matthew Flatt. keyword arguments, take 2. plt-scheme mailing list, 2007. https://lists.racket-lang.org/users/archive/2007-June/
018964.html

R. Kelsey, W. Clinger, and J. Rees (eds.). Revised5 Report on the Algorithmic Language Scheme. Higher-Order and Symbolic
Computation 11(1), 1998. https://doi.org/10.1023/A:1010051815785

Eugene E. Kohlbecker and Mitchell Wand. Macro-by-Example: Deriving Syntactic Transformations from their Specifications.
In Proc. Symposium on Principles of Programming Languages (POPL ’87), pp. 77–84, 1987. http://doi.acm.org/10.1145/
41625.41632

Alex Shin, John Cowan, and Arthur A. Glecker (eds.). Revised7 Report on the Algorithmic Language Scheme. 2013. http:
//www.scheme-reports.org/

Michael Sperber, Kent Dybvig, Matthew Flatt, and Anton van Straaten (eds.). Revised6 Report on the Algorithmic Language
Scheme—Standard Libraries. 2009a. http://www.r6rs.org/final/r6rs-lib.pdf

Michael Sperber, Kent Dybvig, Matthew Flatt, and Anton van Straaten (eds.). Revised6 Report on the Algorithmic Language
Scheme. Journal of Functional Programming 19(S1), pp. 1–301, 2009b. https://doi.org/10.1017/S0956796809990074

https://lists.racket-lang.org/users/archive/2007-June/018964.html
https://lists.racket-lang.org/users/archive/2007-June/018964.html
https://doi.org/10.1023/A:1010051815785
http://doi.acm.org/10.1145/41625.41632
http://doi.acm.org/10.1145/41625.41632
http://www.scheme-reports.org/
http://www.scheme-reports.org/
http://www.r6rs.org/final/r6rs-lib.pdf
https://doi.org/10.1017/S0956796809990074

	Abstract
	1 Introduction
	2 New Template Features
	2.1 Splicing
	2.2 Try/Catch
	2.3 Metafunctions

	3 The Template Language
	3.1 Templates and Head Templates
	3.2 Syntax Objects
	3.3 Variables and Ellipses

	4 Template Instantiation
	4.1 Abstract Syntax
	4.2 A Naive Implementation
	4.3 Implementation Improvements
	4.4 Substitution: Optimizing for Space

	5 Conclusion
	Acknowledgments
	Bibliography

