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Pattern matching is an important feature of programming languages for data abstraction. Many pattern-matching extensions
have been proposed and implemented for extending the range of data types to which pattern matching is applicable. Among
them, the pattern-matching system proposed by Egi and Nishiwaki features practical pattern matching for non-free data
types by providing an extensible non-linear pattern-matching facility with backtracking [20]. However, they implemented
their proposal only in an interpreter of the Egison programming language, and a method for compiling pattern-matching
expressions of Egison was not discussed. This paper proposes a method for translating a program that contains pattern-
matching expressions of Egison to a program that contains only the existing syntax constructs of functional programming
languages. This method is based on the three key ideas: (i) transformation of a matcher to a function that takes a pattern
and a target, and returns lists of triples of a pattern, a matcher, and a target; (ii) compilation of match-all to application
of the map function; (iii) transformation of a value pattern to a function that takes an intermediate pattern-matching result
and returns a value. This paper shows the proposed method works by showing Scheme macros that provide the users the
pattern-matching facility of Egison. This paper also presents benchmark results that show Egison pattern-matching embedded
in Gauche Scheme is faster than the original Egison interpreter.
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1 INTRODUCTION
Pattern matching is an important feature of programming languages for data abstraction. Pattern matching allows
us to replace many verbose function applications for decomposing data (such as car and cdr) to an intuitive
pattern. The pattern-matching facility for algebraic data types is common in modern functional programming
languages. For example, Haskell and OCaml support pattern matching for algebraic data types. Many Scheme
implementations also have a similar pattern-matching facility [8] though Scheme does not contain pattern
matching for algebraic data types in its specification, R7RS [29].
However, some data types are not algebraic data types, and we cannot use the common pattern-matching

facility for them. These data types are called non-free data types. Non-free data have no canonical form as data of
algebraic data types. For example, multisets are non-free data types because the multiset {a,b,b} has two other
equivalent but syntactically different forms {b,a,b} and {b,b,a}.

Many pattern-matching extensions have been proposed for extending the range of data types to which pattern
matching is applicable to non-free data types [25, 35]. Among them, the pattern-matching system proposed by
Egi and Nishiwaki [20] features practical pattern matching for non-free data types with the following three
features: (i) non-linear pattern matching with backtracking; (ii) extensibility of pattern-matching algorithms;
(iii) polymorphic patterns. However, the pattern-matching algorithm proposed by them is not as simple as the
earlier pattern-matching extensions that can be compiled into simple conditional branches and Egi and Nishiwaki
implemented their proposal only in an interpreter of the Egison programming language. As a result, a method for
efficiently compiling their pattern matching system was not obvious.

This paper proposes a method for translating a program that contains pattern-matching expressions of Egison
to a program that contains only the existing syntax constructs of functional programming languages. The reason
why this paper aims to implement the pattern-matching facility of Egison as syntactic sugar of the existing
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languages is to fully utilize the optimization techniques of an existing compiler without effort for extending an
existing compiler.
This paper shows the proposed method works by implementing the pattern-matching facility of Egison on

Scheme. We choose Scheme as the target programming language by the following two reasons: (i) Scheme
has a macro system and provides easy meta-programming environment; (ii) Scheme is a dynamically typed
programming language. Thanks to (i), we can add a new syntactic sugar to Scheme without modifying a Scheme
compiler. I do not use the eval function for this implementation to fully utilize the optimization techniques of a
compiler by handling all the variable bindings natively by a Scheme compiler. The reason (ii) comes from the
problem that the static typing of a program generated by the proposed method is difficult. The extension of the
proposed method for statically typed programming languages remains as future work. The implementation of the
proposed method as Scheme macros has been already open-sourced [2]. We can try the macros on the Gauche
Scheme [3].

The remainder of this paper is organized as follows. Sect. 2 reviews the history of pattern-matching extensions
and implementation of pattern matching in Scheme. Sect. 3 introduces the syntax of the proposed Scheme
macros for pattern matching. Sect. 4 explains the pattern matching algorithm of Egison and implementation
of this algorithm in Scheme. Sect. 5 explains the implementation of the proposed macros. Sect. 6 discusses the
performance of the proposed macros. Sect. 7 mentions the remained work. Finally, Sect. 8 concludes the paper.

2 RELATED WORK
This section reviews the history of pattern matching and implementations of pattern matching in Scheme.

2.1 History of Pattern Matching and Its Extensions
Pattern matching that looks similar to pattern matching widely used nowadays was proposed by Burstall in
1969 [17]. Burstall proposed to use the notation “let cons(a, y) = x” instead of “let (a, y) = decons(x)”.
In [17], concat is defined in the modern fashion. Algebraic data types were introduced after pattern matching.
HOPE [18] proposed in 1980 by Burstall, MacQueen, and Sannella is a well-known language that introduced
user-defined algebraic data types and pattern matching for them.

In the 1980s, more expressive pattern matching for a wider range of data types started to be pursued. Miranda’s
laws [31, 32] and Wadler’s views [36] are early such research. They discarded the assumption that one-to-one
correspondence should exist between patterns and data constructors. They enable pattern matching for data types
whose data have multiple representation forms. For example, Wadler’s paper [36] presents pattern matching for
complex numbers that have two different representation forms: Cartesian and polar. However, the expressive
power of these pattern-matching systems is not enough for representing patterns for non-free data types. These
pattern-matching systems support neither non-linear patterns nor pattern matching with multiple results.
These works in the 1980s lead to the development of more pattern-matching extensions. Erwig’s active

patterns [21] proposed in 1996 and Tullsen’s first class patterns [34] proposed in 2000 are such extensions. Both
extensions allow users to customize the pattern-matching algorithm for each pattern constructor. Active patterns
support non-linear patterns though they do not support pattern matching with multiple results. First class
patterns support pattern matching with backtracking though they do not support pattern matching with multiple
results.

Egison [1] is a programming language with a pattern matching system that is extensible and supports both of
non-linear patterns and multiple results [20]. The expressions below match a list “{1 2 3}” as a list of integers
“(list integer)” using the pattern “<cons $x $ts>”. In Egison, a pattern variable begins with “$”. Egison uses
four kinds of parenthesis for a different purpose. “()” is used to build a syntax tree or apply a function. “<>” is
used to apply a pattern constructor to patterns. “[]” is used to build a tuple. “{}” is used to build a list.
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1 (match-all {1 2 3} (list integer) [<cons $x $ts> [x ts]]) ; {[1 {2 3}]}

The match-all expression used in the above program returns a list of the results evaluating the body expression for
all the pattern-matching results. The cons pattern decomposes a list into the head element and the rest. Therefore,
in this case, the evaluation result of this match-all contains just a single element. The pattern-matching expression
of Egison takes a matcher in addition to a target and match clauses. A matcher specifies the method to interpret
the pattern. The matcher “(list integer)” specifies that we pattern-match the target with the given pattern as a
list of integers. Users can define their own matchers in Egison.

If we change thematcher of the above match-all from “(list integer)” to “(multiset integer)”, the evaluation
result also changes. The cons pattern of a multiset is defined to divide a target list into an arbitrary element and
the rest. As a result, there are three decompositions.

1 (match-all {1 2 3} (multiset integer) [<cons $x $ts> [x ts]])
2 ; {[1 {2 3}] [2 {1 3}] [3 {1 2}]}

In addition to cons, the join pattern can be used for the list matcher. The join pattern divides a target list
into two lists, a head part and tail part.

1 (match-all {1 2 3} (list integer) [<join $hs $ts> [hs ts]])
2 ; {[{} {1 2 3}] [{1} {2 3}] [{1 2} {3}] [{1 2 3} {}]}

The expressions below match a list that consists of n zeros as a multiset of integers with patterns that match
a sequential triple “<cons $x <cons ,(+ x 1) <cons ,(+ x 2) _>>>”. In the pattern-matching expression below,
the target list does not contain a sequential triple. As a result, this expression returns an empty list. In Egison, a
value pattern that checks equality of data begins with “,”. After “,”, we can write an arbitrary expression. The time
complexity of this pattern matching is O(n2) because Egison uses backtracking for traversing a search tree. The
Curry functional logic programming language also supports non-linear pattern matching with multiple results.
However, Curry transforms a non-linear pattern to pattern guards [14, 15, 23]. Therefore, the time complexity for
the same pattern matching is O(n3) in Curry because pattern guards are applied after pattern matching succeeds.
Thus, backtracking is an important feature for handling non-linear patterns.

1 (match-all (take n (repeat 0)) (multiset integer) [<cons $x <cons ,(+ x 1) <cons ,(+ x 2) _>>> x])
2 ; returns [] in O(n^2) time

Of course, if we use a more efficient data structure for lists, we can find a sequential triple more efficiently. For
example, if we assume that the target list is sorted, the time complexity for finding a sequential triple is O(n). In
fact, we can also define such a pattern-matching algorithm by defining a matcher for sorted-lists.
The program below defines a pattern-matching algorithm for a multiset.

1 (define $multiset
2 (lambda [$a]
3 (matcher
4 {[<nil> []
5 {[{} {[]}]
6 [_ {}]}]
7 [<cons $ $> [a (multiset a)]
8 {[$tgt (match-all tgt (list a)
9 [<join $hs <cons $x $ts>> [x {@hs @ts}]])]}]
10 [,$val []
11 {[$tgt (match [val tgt] [(list a) (multiset a)]
12 {[[<nil> <nil>] {[]}]
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13 [[<cons $x $xs> <cons ,x ,xs>] {[]}]
14 [[_ _] {}]})]}]
15 [$ [something]
16 {[$tgt {tgt}]}]})))

The matcher expression used in the above program is a built-in syntax of Egison for defining pattern-matching
algorithms for each data type. The definition of multiset in Scheme will be explained in Sect. 5.1. I will skip the
explanation of the following program for now. This paper imports the pattern-matching facility of Egison into
Scheme.

Pattern matching was also invented in the context of computer algebra. Pattern matching for symbolical
mathematical expression was implemented in the symbol manipulation system proposed by McBride [26],
which was developed on top of Lisp. This pattern-matching system supports non-linear patterns. Their paper
demonstrates some examples that process symbolical mathematical expressions to show the expressive power of
non-linear patterns. However, this approach does not support pattern matching with multiple results, and users
cannot extend its pattern-matching facility.
Queinnec [28] also pursued expressive pattern matching. Though this proposal is specialized in lists and not

extensible, the proposed pattern-matching system is as expressive as Egison. The proposed system supports the
cons and the join patterns, match-all, not-patterns, and recursive patterns.

2.2 Implementation History of Pattern Matching in Scheme
Currently, a SRFI for pattern matching for algebraic data types does not exist. However, pattern matching for
algebraic data types designed by Wright [37] is implemented in most of the well-known Scheme implemen-
tations such as Gauche [8], Guile [12], and Chicken [13]. Among them, Racket [22] provides more expressive
pattern matching than other Scheme implementations. The match expander [33] of Racket allows users arbitrary
transformation of data when pattern matching. For example, we can describe view patterns [36] using the match

expander.
This paper implements more expressive pattern matching that supports non-linear pattern matching with

backtracking just by introducing Scheme macros. This work can be easily ported to other relatives of Scheme.
For example, Yuito Murase has exported the proposed Scheme macros to Common Lisp [4].

2.3 Logic Programming vs. Egison
Unification of logic programming supports non-linear pattern matching with backtracking. Utilizing unification,
we can describe pattern matching for non-free data types in logic programming languages. For example, here is a
Prolog program that extracts identical pairs of elements from a list with pattern matching.

1 insert(X,XS,[X|XS]).
2 insert(X,[Y|YS],[Y|ZS]) :- insert(X,YS,ZS).
3
4 perm([], []).
5 perm([X|XS], YS) :- perm(XS,ZS), insert(X,ZS,YS).
6
7 perm([1,2,3,4,5,6,7,8],[X|[X|_]]).

definition of a pattern logic programming: how to construct data Egison: how to decompose data
we can separate code for pattern matching and functional definition.
Egison provides ad-hoc polymorphism of patterns. Ad-hoc polymorphism increases the readability of patterns

dramatically especially for value patterns.
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(1) We can define a pattern-matching algorithm in functional programming style.
(2) Ad-hoc polymorphism of patterns.

3 SYNTAX OF THE PROPOSED MACROS
This section introduces the usage of the pattern-matching expressions provided by the proposed Scheme macros.
Fig. 1 shows the formal grammar of the pattern-matching expressions of the proposed Scheme macros.M denotes
an expression for pattern matching. e denotes an arbitrary expression includingM . p denotes a pattern. x denotes
a symbol. C denotes a pattern constructor.

M ::= (match-all e e [p e] · · · )

| (match-first e e [p e] · · · )

| Something

p ::= _ | x | ,e | (C p · · · ) | ’(p · · · )

| (or p · · · ) | (and p · · · ) | (not p)

| (later p)

Fig. 1. Syntax of the proposed macros

Scheme programs in this paper use three kinds of parenthesis. “[]” is used to build a tuple. “{}” is used to build
a list. “()” is used to build a syntax tree or apply a function and a pattern constructor. Gauche treats these three
parentheses in the same way as “()”. Though we use “<>” for applying a pattern constructor in Egison, we use
“()” for that in Scheme because we cannot use “<>” as a parenthesis in Scheme. 1

The match-all expression has the completely same meaning as that of Egison. The match-first is similar to
the traditional match expression; it evaluates the body of the first match clause whose pattern matches with the
target. We do not use the name match to avoid the name conflict with Wright’s match [37] because Wright’s
match plays fundamental role for defining a user-defined matcher, which will be explained in Sect. 5.1. The only
difference between match-first and the traditional match expression is match-first takes a matcher. The both
match-all and match-first expression can take multiple match clauses. Something is the only built-in matcher
of the Egison pattern-matching system. Something can handle only wildcards or pattern variables, and is the only
matcher that can bind a value to a pattern variable.
The proposed macros provide several pattern constructs. The rest of this subsection explains each of them.

3.1 Wildcard and Pattern Variables
Symbols that appear in a pattern are handled as pattern variables. The value assigned to a pattern variable can be
referred to in its right side of the pattern. “_” represents a wildcard. A wildcard is pattern-matched with a target
in the same method with a pattern variable though no assignment is created for a wildcard.

3.2 Value Patterns
Value patterns are represented by prepending “,” to an expression that is evaluated to a value. Value patterns are
used for expressing non-linear patterns. The pattern-matching algorithms for value patterns are also defined in
matchers.
The program below pattern-matches a list (1 2 5 9 4) as a multiset. “,(+ x 1)” inside the pattern is a value

pattern. The value assigned to the pattern variable x appeared in the left side of the pattern can be referred to
inside the value pattern. The pattern in the program below matches if the target collection contains pairs of
elements in a sequence.
1The square brackets “[]” are reserved for future language extension in R7RS. Furthermore, the use of braces “{}” is outside the standard
language specification in both of R6RS and R7RS. Therefore, it is safe to replace braces and square brackets to parenthesis when we export
the Gauche Scheme program in this paper to other Scheme implementation.
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1 (match-all '(1 2 5 9 4) (Multiset Integer) [(cons x (cons ,(+ x 1) _)) x]) ; (1 4)

The use of “,” to notate a value pattern is an analogy of the use of “,” in quasiquote. A value pattern is similar
to unquote in the sense that only the expressions inside value patterns that are followed after “,” are evaluated as
an ordinary Scheme expression in a pattern.

3.3 Constructor Patterns
When the pattern is a list, the first element is always handled as a pattern constructor. For example, join and cons

that appear in “(join _ (cons x _))” are pattern constructors. The pattern-matching algorithm for handling
them is defined and retained in matchers. For example, in the Listmatcher, join is defined as a pattern constructor
that divides a collection into a head and tail part, and cons is defined as a pattern constructor that divides a
collection into the head element and rest. As a result, the following pattern matches each element of the target
list.

1 (match-all '(1 2 3) (List Integer) [(join _ (cons x _)) x]) ; (1 2 3)

3.4 Tuple Patterns
Tuple patterns are represented by prepending “'” to a list of patterns. Each element of a tuple pattern is pattern-
matched with the corresponding element of a target list using the corresponding element of a matcher list as a
matcher.

1 (match-all '[1 2] `[,Integer ,Integer] ['[x y] `(,x ,y)]) ; ((1 2))
2 (match-all '[1 2 3] `[,Integer ,Integer ,Integer] ['[x y z] `(,x ,y ,z)]) ; ((1 2 3))

“'” is important to distinguish a tuple pattern from a constructor pattern. For example, “'[x y]” cannot be
distinguished from a constructor pattern whose constructor is “x” if “'” is not prepended.

3.5 Logical Patterns
Logical pattern constructs, or-patterns, and-patterns, and not-patterns are useful also in Egison. Its usage is
similar to that in the existing languages. An or-pattern matches if one of the argument patterns matches the target.
An and-pattern matches if all the argument patterns match the target. A not-pattern matches if the argument
pattern does not match the target.

1 (match-all '(1 2 3) (List Integer) [(cons (or ,1 ,10) _) "OK"]) ; ("OK")
2 (match-all '(1 2 3) (List Integer) [(cons (and ,1 x) _) x]) ; (1)
3 (match-all '(1 2 3) (List Integer) [(cons x (not (cons ,x _))) x]) ; (1)

3.6 Later Patterns
A later pattern is used to change the order of the pattern-matching process. Basically, the pattern-matching
system of Egison processes patterns from left to right in order. However, we sometimes want to change this order,
for example, to refer to the value bound to the right side of pattern variables. A later pattern can be used for such
purpose. The pattern inside a later pattern is pattern-matched after pattern matching for the other parts of the
pattern has succeeded.

1 (match-all '(1 1 2 3) (List Integer) [(cons (later ,x) (cons x _)) x]) ; (1)
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1 (MState {[(cons m (cons (val ,(lambda (m) m)) _)) (Multiset Integer) {2 8 2}]} {})

2
(MState {[m Integer 2] [(cons (val ,(lambda (m) m)) _) (Multiset Integer) {8 2}]} {})
(MState {[m Integer 8] [(cons (val ,(lambda (m) m)) _) (Multiset Integer) {2 2}]} {})
(MState {[m Integer 2] [(cons (val ,(lambda (m) m)) _) (Multiset Integer) {2 8}]} {})

3 (MState {[m Something 2] [(cons (val ,(lambda (m) m)) _) (Multiset Integer) {8 2}]} {})

4 (MState {[(cons (val ,(lambda (m) m)) _) (Multiset Integer) {8 2}]} {2})

5 (MState {[,m Integer 8] [_(Multiset Integer) {2}]} {2})
(MState {[,m Integer 2] [_(Multiset Integer) {8}]} {2})

6 (MState {[_(Multiset Integer) {8}]} {2})

7 (MState {[_Something {8}]} {2})

8 (MState {} {2})

Fig. 2. Reduction path of matching states

4 ALGORITHM OF EGISON PATTERN MATCHING AND ITS IMPLEMENTATION IN SCHEME
This section explains and implements the pattern-matching algorithm of Egison, which is described in detail in
Sect. 5 and Sect. 7 of the original paper of Egison [20]. After the explanation of the pattern-matching algorithm, I
introduce a simplified implementation of this algorithm in Scheme. This implementation is called by the proposed
macros whose implementation are introduced in Sect. 5.

First, I start by explaining the pattern-matching algorithm of Egison briefly. In Egison, pattern matching is
implemented as reductions of matching states. A matching state consists of a stack of matching atoms and an
intermediate result of pattern matching. A matching atom is a triple of a pattern, target, and matcher. In each step
of a pattern-matching process, the top matching atom of the stack of matching atoms is popped off. From this
matching atom, a list of lists of next matching atoms is calculated. Each list of the next matching atoms is pushed
on the stack of matching atoms of the matching state. As a result, a single matching state is reduced to multiple
stacks of matching states in a single reduction step. Pattern matching is recursively executed for each matching
state. When a stack becomes empty, it means pattern matching for this matching state succeeded. Fig. 2 shows
the reduction path when executing the match-all expression below. The matching state that is not grayed-out in
the i-th row is reduced to matching states in the (i + 1)-th row. For example, the first matching state in the second
row is reduced to the matching state in the third row. MState takes two arguments, a stack of matching atoms
and an intermediate pattern-matching result. The value pattern ,m is transformed to (val ,(lambda (m) m)). This
transformation is explained in Sect. 5.3.

1 (match-all '(2 8 2) (Multiset Integer) [(cons m (cons ,m _)) m]) ; (2 2)

The processMState function in Fig. 3a implements this process. processMState takes a matching state as its
argument and returns a list of next matching states. In the program in Fig. 3a, several matching clauses are
omitted for simplification. “...” in the 4th line represents this omission.
The match clause in the 5th and 6th lines describes the case where the matcher of the top matching atom

is Something. In this case, the value of the target “t” is added to the intermediate pattern-matching result. The
Something matcher is simply defined as follows.

1 (define Something 'Something)
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1 (define processMState
2 (lambda (mState)
3 (match mState
4 ...
5 [('MState {[pvar 'Something t] . mStack} ret)
6 `((MState ,mStack ,(append ret `{,t})))]
7 [('MState {[p M t] . mStack} ret)
8 (let {[next-matomss (M p t)]}
9 (map (lambda (next-matoms) `(MState ,(append next-matoms mStack) ,ret)) next-matomss))])))

(a) The processMState function
1 (define processMStates
2 (lambda (mStates)
3 (match mStates
4 [() '{}]
5 [(('MState '{} ret) . rs)
6 (cons ret (processMStates rs))]
7 [(mState . rs)
8 (processMStates (append (processMState mState) rs))])))

(b) The processMStates function

1 (define processMStates1
2 (lambda (mStates)
3 (match mStates
4 [() '{}]
5 [(('MState '{} ret) . rs)
6 `(,ret)]
7 [(mState . rs)
8 (processMStates1 (append (processMState mState) rs))])))

(c) The processMStates1 function

Fig. 3. Implementation of the Egison pattern matching procedure in Scheme

The match clause in the 7th-9th lines describes the general case. The list of lists of next matching atoms is
calculated in the 8th line. In this Scheme implementation, a matcher is a function that takes a pattern and a target,
and returns a list of lists of the next matching atoms as explained again in Sect. 5.1.

In the program in Fig. 3a, the matching clauses for and-patterns, or-patterns, not-patterns, and later patterns
introduced in Sect. 3 are omitted. We can implement these pattern constructs by adding match clauses for them.
We can see the full implementation of processMState in egison.scm in the GitHub repository of the proposed
macros [2].

The processMStates in Fig. 3b implements the whole pattern-matching process while the above processMState
implements a step of this pattern-matching procedure. processMStates takes a list of matching states as its
argument and returns all pattern-matching results. The first match clause (line 4) describes the case where a list of
matching states is empty. In this case, processMStates returns an empty list and terminates the pattern-matching
procedure. The second match clause (lines 5 and 6) describes the case where the stack of the first matching state
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is empty. In this case, the intermediate pattern-matching result of this matching state is added to the return value
of processMStates as a final result of pattern matching. processMStates is recursively called for the remaining
matching states. The third match clause (lines 7 and 8) describes the general case. In this case, processMState is
called for the first matching state. processMStates is recursively called for the result of appending the result of
this processMState and the remaining matching states.
The above implementation is from egison.scm [2] that does not support pattern matching with infinitely

many results. In processMStates of stream-egison.scm [2], the traversal of an infinitely large search tree is
implemented that is explained in Sect. 5.2 of the original Egison paper [20]. Appendix B demonstrates pattern
matching that uses the macros provided by stream-egison.scm.

processMStates strictly evaluates all the pattern-matching results even when only the first pattern-matching
result is used. Consequently, sharing the same processMStates functionwith match-first is inefficient. For that rea-
son, the processMStates1 function in Fig. 3c is used for match-first instead of processMStates. processMStates1
is defined to calculate only the first pattern-matching result. This distinct implementation of processMStates is
not necessary for the Egison language that adopts a lazy evaluation strategy.

5 IMPLEMENTATION METHOD
There are three problems for porting the Egison pattern-matching system into Scheme. The three tricks explained
in Sect. 5.1, Sect. 5.2, and Sect. 5.3 solve these problems, respectively.

(1) How to represent a matcher in Scheme that is a special built-in object of Egison?
(2) How to implement a syntax construct that calls the complicated pattern-matching procedure in Sect. 4?
(3) How to represent a non-linear pattern that has the complex scoping rule in Scheme?

5.1 Compiling Matchers to lambdas
In the Egison pattern matching system [20], a matcher is a special object that retains a pattern-matching algorithm.
In the proposed Scheme macros, we encode a matcher with lambdas to avoid introducing new built-in objects. We
can achieve that by defining a matcher as a function that takes a pattern and a target, and returns a list of lists of
next matching atoms. For example, the Multiset matcher is defined as follows.

1 (define Multiset
2 (lambda (M)
3 (lambda (p t)
4 (match p
5 [('nil) (if (eq? t '{}) '{{}} '{})]
6 [('cons px py)
7 (map (lambda (xy) `{[,px ,M ,(car xy)] [,py ,(Multiset M) ,(cadr xy)]})
8 (match-all t (List M)
9 [(join hs (cons x ts)) `[,x ,(append hs ts)]]))]
10 [('val v)
11 (match-first `[,t ,v] `[,(List M) ,(Multiset M)]
12 ['[(nil) (nil)] '{{}}]
13 ['[(cons x xs) (cons ,x ,xs)] '{{}}]
14 ['[_ _] '{}))]
15 [pvar `{{[,pvar Something ,t]}}]))))

Note that the separate use of “{}” and “[]” introduced in Sect. 3 enhances the readability of the above program.
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As a matcher definition of Egison [20], a matcher definition consists of match clauses for pattern matching
against a pattern. Each match clause describes a pattern-matching algorithm against the matched pattern. For
pattern matching against patterns, the traditional Wright’s match expression [37] is used.

The first match clause (line 5) describes the pattern-matching algorithm for the nil pattern that matches with
an empty list. When the target list is empty, this match clause returns a list that consists of an empty list of
matching atoms. Otherwise, this match clause returns an empty list. That means pattern matching fails.

The second match clause (lines 6-9) describes a pattern-matching algorithm for the cons pattern. The pattern
of this match clause is “('cons px py)”. The first and second argument of the cons pattern is assigned to px and
py respectively. The body of this match clause is a bit complicated. The evaluation result of this body expression
depends on the target list. Now, we consider a case where the target list is “(1 2 3)”. In this case, this body
expression is evaluated to “{{[px M 1] [py (Multiset M) (2 3)]} {[px M 2] [py (Multiset M) (1
3)]} {[px M 3] [py (Multiset M) (1 2)]}}”. Each list of the next matching atoms is pushed to the current
matching state; as a result, three new matching states are generated. For the first matching state, 1 and (2 3)

are pattern-matched using the “M” and “(Multiset M)” matcher with the patterns px and py, respectively, in the
succeeding pattern-matching process.
The third match clause (lines 10-14) describes a pattern-matching algorithm for a value pattern. The body of

this match clause compares the target and the value inside the value pattern. The match-first expression that
recursively calls the Multiset matcher is used for this comparison.

The fourth match clause (line 15) describes a pattern-matching algorithm for a pattern variable and wildcard.
This match clause creates the next matching atom by just changing the matcher from “(Multiset M)” to Something.

5.2 Compiling match-all to an Application of map
The match-all expression is transformed into an application of map whose first argument is a function whose
argument is a return value of extract-pattern-variables, and second argument is the result of gen-match-results.
The extract-pattern-variables function takes a pattern and returns a list of pattern variables that appear in the
pattern. The order of the pattern variables corresponds with the order they appeared in the pattern. For example,
“(extract-pattern-variables '(cons x xs)” returns “(x xs)”. The gen-match-results function takes a pattern,
a target, and a matcher, and returns a list of pattern-matching results. These pattern-matching results consist of
values that are going to be bound to the pattern variables returned by extract-pattern-variables. The order of
the values in the gen-match-results must correspond with the order of pattern variables returned by extract-

pattern-variables. For example, “(gen-match-results '(cons x xs) (Multiset Something) '(1 2 3))” returns
“((1 (2 3)) (2 (1 3)) (3 (1 2)))”.

1 (match-all t M [p e])
2 ;=> `(map (lambda ,(extract-pattern-variables p) ,e) (gen-match-results ,p ,M ,t))

The above transformation is done by the following macro.

1 (define-macro (match-all t M . clauses)
2 (if (eq? clauses '())
3 '()
4 (let* {[clause (car clauses)]
5 [p (rewrite-pattern (list 'quasiquote (car clause)))]
6 [es (cdr clause)]}
7 `(append (map (lambda (ret) (apply (lambda ,(extract-pattern-variables p) . ,es) ret))
8 (gen-match-results ,p ,M ,t))
9 (match-all ,t ,M . ,(cdr clauses))))))
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define-macro in the above program is a traditional non-hygienic macro similar to defmacro of Common Lisp [11].
The match-all macro requires to call the complex Scheme procedures such as extract-pattern-variables for
expanding the macro. Therefore, defining the macro just by using syntax-rules, which is supported in R7RS [29]
is difficult. By using syntax-case and syntax->datum in R6RS [30], we can define the above macro relatively easily.

The program below defines gen-match-results. gen-match-results is a function that calls the processMStates

function introduced in Sect. 4. An initial matching state “(MState {[p M t]} {})” is created from “p”, “M”, and “t”.

1 (define gen-match-results
2 (lambda (p M t)
3 (processMStates `{(MState {[,p ,M ,t]} {})})))

Generally, pattern matching for algebraic data types is compiled to an expression that uses only more primitive
conditional branches such as the if expressions [27]. As a result, the compiled program is as efficient as the
program that was written manually without using pattern matching. However, the pattern-matching procedure
of Egison is so complicated that it is impossible to compile pattern-matching directly to an expression only
with more primitive conditional branches. This section showed that we can compile the large pattern-matching
procedure of Egison by separating the extraction of pattern variables and the calculation of pattern-matching
results. These two procedures are implemented in Scheme, and a pattern-matching expression is compiled to a
program that calls these two procedures. This method allows us to compile very complicated pattern matching
procedures but has overhead. Sect. 6.2 analyzes this overhead.

5.3 Compiling Value Patterns to lambdas
A value pattern is transformed into a lambda expression whose arguments are pattern variables that appear in
the left side of the value pattern. For example, “(cons x (cons y (cons ,x (cons z _))))” is transformed into
“(cons x (cons y (cons (val ,(lambda (x y) x)) (cons z _))))”. The rewrite-pattern function called inside
the macro does this transformation.

This transformed value pattern is handled in processMState. The following program shows a match clause in
processMState for handling a value pattern, which is omitted in the explanation of processMState in Sect. 4.

1 (define processMState
2 (lambda (mState)
3 (match mState
4 [('MState {[('val f) M t] . mStack} ret)
5 (let {[next-matomss (M `(val ,(apply f ret)) t)]}
6 (map (lambda (next-matoms) `(MState ,(append next-matoms mStack) ,ret)) next-matomss))]
7 ...)))

When the pattern of the top matching atom is a value pattern, it applies the intermediate pattern-matching result
to the function in the value pattern and passes it to the matcher. This pattern is handled by the third match clause
of the Multiset matcher in Sect. 5.1, for example.

6 PERFORMANCE
The section discusses the performance of the proposed Scheme macros. Sect. 6.1 presents an idea for improving
the performance of Egison pattern matching that was implemented for the first time in the proposed Scheme
macros. Sect. 6.2 shows the benchmark results of Egison and the proposed Scheme macros and analyzes these
benchmark results.
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6.1 Tips for Improving Performance
There are cases that the performance of pattern matching improves by adding a new match clause to a matcher.
This subsection introduces such examples.

First, we can improve the performance of the Multiset implementation in Sect. 5.1 using this method. The
Multiset matcher definition below has a new match clause in the 6th line. This match clause describes a pattern-
matching algorithm for the cons pattern whose second argument is a wildcard. In this case, we do not need to
calculate the rest of the collection. The cost of calculating the rest of the collection is so high that the performance
dramatically improves by adding this new match clause.

1 (define Multiset
2 (lambda (M)
3 (lambda (p t)
4 (match p
5 ...
6 [('cons px '_) (map (lambda (x) `{[,px ,M ,x]}) t)]
7 [('cons px py)
8 (map (lambda (xy) `{[,px ,M ,(car xy)] [,py ,(Multiset M) ,(cadr xy)]})
9 (match-all t (List M)
10 [(join hs (cons x ts)) `(,x ,(append hs ts))]))]
11 ...))))

Here is another example from the List matcher. The cost of pattern matching for the join pattern is high.
However, the cost for enumerating only the tail parts is low; we can write a tail-recursive function for enumerating
the tail parts. When we use join patterns, the first argument of join is often a wildcard. Therefore, by adding a
match clause for a join pattern whose first argument is a wildcard as follows, we can improve the efficiency of
pattern matching for a list.

1 (define List
2 (lambda (M)
3 (lambda (p t)
4 (match p
5 [('nil) (if (eq? t '{}) '{{}} '{})]
6 [('cons px py)
7 (match t
8 (() '{})
9 ((x . xs)
10 `{{[,px ,M ,x] [,py ,(List M) ,xs]}}))]
11 [('join '_ py)
12 (map (lambda (y) `{[,py ,(List M) ,y]})
13 (tails t))]
14 [('join px py)
15 (map (lambda (xy) `{[,px ,(List M) ,(car xy)] [,py ,(List M) ,(cadr xy)]})
16 (unjoin t))]
17 [('val x) (if (eq? x t) '{{}} '{})]
18 [pvar `{{[,pvar Something ,t]}}]))))
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6.2 Benchmark Result
I compared the performance of a nested cons pattern for a multiset. For benchmarking Egison and the proposed
Scheme macros, I used the expressions below. between is a function of Egison that returns a list that contains
sequential integers between the first and second argument.

1 (match-all (between 1 n) (multiset something) [<cons $x <cons $y _>> [x y]])

Similarly, iota is a function in Scheme that returns a list of sequential integers that starts from the integer of the
second argument.

1 (match-all (iota n 1) (Multiset Something) [(cons x (cons y _)) `(,x ,y)])

I also made a comparison with the functional description of the same program in Scheme.

1 (define comb2 (lambda (xs) (comb2-helper xs '{})))
2
3 (define comb2-helper
4 (lambda (xs hs)
5 (if (eq? xs '{})
6 '{}
7 (append (append (map (lambda (y) `(,(car xs) ,y)) hs)
8 (map (lambda (y) `(,(car xs) ,y)) (cdr xs)))
9 (comb2-helper (cdr xs) (append hs `(,(car xs))))))))
10
11 (comb2 (iota n 1))

I used Egison version 3.8.1 and Gauche version 0.9.7 on 2.3 GHz Intel Core i5 processor for this benchmark.

comb2 n=50 n = 100 n = 200 n=400 n=800 n=1600
Egison with multiset in Sect. 5.1 1.189s 4.470s 21.441s 112.67s 697.66s n/a
Egison with multiset in Sect. 6.1 0.438s 1.312s 4.751s 22.612s 112.89s 714.43s
Scheme with Multiset in Sect. 5.1 0.124s 0.436s 2.413s 17.900s 117.41s n/a
Scheme with Multiset in Sect. 6.1 0.074s 0.099s 0.259s 0.752s 3.159s 12.641s
Scheme (functional style) 0.026s 0.042s 0.107s 0.373s 1.618s 7.949s

Table 1. Benchmark results

Table 1 shows the benchmark results. I ran all the benchmarks five times and took a median for each of them.
For all the benchmarks, Scheme is faster than Egison. The reason for these performance differences is that Gauche,
a scheme implementation I used for the benchmark, has a compiler while Egison has only a simple interpreter
implementation.

Adding a matcher clause for a constructor pattern with wildcards is effective for both Egison and Scheme. This
trick improves the performance of Egison and Scheme around 6 times and 40 times, respectively for n = 800. The
performance improvement is larger for Scheme than Egison because Scheme is a strict language. Scheme always
evaluates “(append hs ts)” in the 9th line of the Multiset definition in Sect. 5.1 whereas Egison evaluates the
corresponding expression only when it is necessary.

We can also observe that pattern-matching-oriented programming style is only two times slower than functional
programming style in this case, though the program in pattern-matching-oriented programming style much
simpler.
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7 FUTURE WORK
Implementation of more expressive pattern constructs for non-free data types remains as future work. For
example, several advanced pattern constructs in Egison such as loop patterns [19], sequential patterns, and pattern
functions [6] are still not implemented in the proposed Scheme macros. Loop patterns allow us to describe
repetitions in a pattern like the Kleene star operator of the regular expressions. Loop patterns are more expressive
than the other repeated pattern such as the Kleene star operator in the sense that loop patterns allow users to
change the pattern repeated depending on the current repeat count [19]. Sequential patterns are a generalization
of later patterns and allow users to control the order of the pattern-matching process. Pattern functions allow
users to modularize patterns with a lexical scope by composing patterns. These pattern constructs widen the
range of patterns that we can describe concisely. Currently, I am preparing a paper to show the usefulness of
these patterns.

Integration of Egison pattern matching with a programming language with a static type system also remains as
future work. Though we have an experimental Template Haskell implementation [7], this Haskell implementation
currently has a limitation that it does not allow users to define new pattern constructors. For example, the
nil, cons, and join pattern constructors are built-in in the current implementation. This limitation comes from
the limitation of Haskell that does not allow overlapping data families [5]. In the current Template Haskell
implementation of Egison, patterns are defined in the library as data of “Pattern a”, which is a data type for
patterns against data whose type is “a”. Users cannot add new data constructors in “Pattern a” in their program
for adding new pattern constructors because of overlap is not permitted. Currently, we are working to find a
method for avoiding this problem.

8 CONCLUSION
This paper proposed a method for compiling Egison pattern-matching expressions that can describe very
expressive pattern matching for non-free data types but has a complicated pattern-matching procedure. The
proposed method made an implementation of the pattern-matching system of Egison very short; the macros and
the pattern-matching procedure is implemented in less than 150 lines of Scheme code. This implementation is
also a good proof of extensibility of Scheme and Lisp.
This pattern-matching library will help the research of pattern matching by providing an easy method for

developing new pattern-matching extensions. This pattern-matching library will also help the education of
algorithms by making its implementation simpler as the implementation of a SAT solver presented in this paper.
I hope this work leads to the further development and propagation of advanced pattern matching.
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A PATTERN-MATCHING-ORIENTED PROGRAMMING
The pattern-matching facility of Egison is so expressive that a new programming style called pattern-matching-
oriented programming style arises. This programming style makes descriptions of mathematical algorithms concise
by confining explicit recursions for traversing data inside intuitive patterns. This section shows several sample
programs in this programming style. I am currently preparing another paper for discussing pattern-matching-
oriented programming techniques. We can execute programs shown in this section by loading a program in [2]
on Gauche [3].

A.1 Basic List Processing Functions in Pattern-Matching-Oriented Style
Pattern matching for non-free data types enables more intuitive definitions of even the basic list processing
functions such as map, concat, and unique by confining recursion inside a pattern.
The map function is defined using pattern matching as follows. The (join _ (cons x _)) pattern matches

each element of a target list. We call this pattern join-cons pattern because it often appears in list programming.
Combining a join-cons pattern with match-all, we can simply implement the map function.

1 (define pm-map
2 (lambda (f xs)
3 (match-all xs (List Something)
4 [(join _ (cons x _)) (f x)])))
5
6 (pm-map (lambda (x) (+ x 10)) `(1 2 3 4))
7 ; (11 12 13 14)

By doubly nesting the above join-cons pattern, we can define the concat function. Note that, we can create a
matcher for such as a list of lists and a multiset of multisets by composing matchers.

1 (define pm-concat
2 (lambda (xss)
3 (match-all xss (List (List Something))
4 [(join _ (cons (join _ (cons x _)) _)) x])))
5
6 (pm-concat `((1 2) (3) (4 5)))
7 ; (1 2 3 4 5)

By combining a not-pattern with a doubly-nested join-cons pattern, we can also define a unique function. The
pattern below extracts only the last appearance of each element; a not-pattern is used to describe that there is no
more x after an occurrence of x. Eq is a matcher that can handle pattern matching for a value pattern. eq? is used
for checking equality.

1 (define pm-unique-simple
2 (lambda (xs)
3 (match-all xs (List Eq)
4 [(join _ (cons x (not (join _ (cons ,x _))))) x])))
5
6 (pm-unique-simple `(1 2 3 2 4))
7 ; (1 3 2 4)

We can define unique whose results consist of the first appearance of each element by using a later pattern. A
later pattern is used to describe that there is no appearance of x in the target list for the first argument of the
join pattern.
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1 (define pm-unique
2 (lambda (xs)
3 (match-all xs (List Eq)
4 [(join (later (not (join _ (cons ,x _)))) (cons x _)) x])))
5
6 (pm-unique `(1 2 3 2 4))
7 ; (1 2 3 4)

A.2 Implementation of a SAT Solver
The program below describes the Davis-Putnam algorithm. We can see a full implementation of this SAT solver in
dp.scm in the GitHub repository of the proposed Scheme macros [2]. Pattern matching for multisets dramatically
improves the readability of the description of this algorithm. We can compare this Scheme program with the
OCaml implementation of the same algorithm in [24].
The sat function takes two argument vars, a list of propositional variable, and cnf, a propositional logic

formula in conjunctive normal form. The tuple consists of vars and cnf is pattern-matched as a tuple of a multiset
of integers and a multiset of multisets of integers in the definition of sat. In this program, a propositional variable
is represented as a positive integer, and a literal is represented as an integer. For example, −1 represents negation
of the propositional variable 1.

1 (define sat
2 (lambda [vars cnf]
3 (match-first `[,vars ,cnf] `[,(Multiset Integer) ,(Multiset (Multiset Integer))]
4 ; satisfiable
5 ['[_ ()] #t]
6 ; unsatisfiable
7 ['[_ (cons () _)] #f]
8 ; 1-literal rule
9 ['[_ (cons (cons l ()) _)]
10 (sat (delete (abs l) vars) (assign-true l cnf))]
11 ; pure literal rule (positive)
12 ['[(cons v vs) (not (cons (cons ,(neg v) _) _))]
13 (sat vs (assign-true v cnf))]
14 ; pure literal rule (negative)
15 ['[(cons v vs) (not (cons (cons ,v _) _))]
16 (sat vs (assign-true (neg v) cnf))]
17 ; otherwise
18 ['[(cons v vs) _]
19 (sat vs (append (resolve-on v cnf)
20 (delete-clauses-with v (delete-clauses-with (neg v) cnf))))])))

The first match clause (line 5) matches if cnf is empty. This match clause returns #t because cnf is satisfiable in
this case. The second match clause (line 7) matches if cnf contains an empty clause. This match clause returns #f
because cnf is unsatisfiable in this case. The third match clause (lines 9 and 10) matches if cnf contains a clause
that consists of a single literal l. In this match clause, we assign l true at once. The fourth match clause (lines 12
and 13) matches when there is a propositional variable v that appears only positively in cnf. In this match clause,
we assign v true at once. The fifth match clause (lines 15 and 16) matches when there is a propositional variable
v that appears only negatively in cnf. In this match clause, we assign v false at once. The final match clause
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(lines 18-20) matches when pattern matching for all the above match clauses fails. This match clause applies the
resolution principle.

B PATTERN MATCHING WITH INFINITELY MANY RESULTS
match-all provided by stream-egison.scm supports pattern matching with infinitely many results. A library
for streams described in SRFI 41 [16] is used for handling lazy lists. The following match-all expressions extract
an infinite list of twin primes and prime triplets from a stream of prime numbers.

1 (load "./stream-egison.scm")
2
3 (define stream-primes (stream-filter bpsw-prime? (stream-iota -1 1)))
4
5 (stream->list
6 (stream-take
7 (match-all stream-primes (List Integer)
8 [(join _ (cons p (cons ,(+ p 2) _)))
9 `(,p ,(+ p 2))])
10 10))
11 ; ((3 5) (5 7) (11 13) (17 19) (29 31) (41 43) (59 61) (71 73) (101 103) (107 109))
12
13 (stream->list
14 (stream-take
15 (match-all stream-primes (List Integer)
16 [(join _ (cons p (cons (and (or ,(+ p 2) ,(+ p 4)) m) (cons ,(+ p 6) _))))
17 `(,p ,m ,(+ p 6))])
18 8))
19 ; ((5 7 11) (7 11 13) (11 13 17) (13 17 19) (17 19 23) (37 41 43) (41 43 47) (67 71 73))

bpsw-prime? is a predicate that checks whether the argument positive integer is a prime number or not. This
predicate is provided by the math.prime Gauche library [9]. stream-iota, stream->list, and stream-take are
provided by the util.stream Gauche library [10]. “(stream-iota -1 1)” returns a stream that contains all the
positive integers. stream-take returns a stream that contains the first elements of the first argument stream. The
number of elements taken from the given stream is specified by the second argument. stream->list is a function
that converts the given stream to a list.

1 (stream->list (stream-take (stream-iota -1 1) 10))
2 ; (1 2 3 4 5 6 7 8 9 10)

In the languages whose default evaluation strategy is non-strict as Haskell and Egison, we do not need to
distinguish these two match-all implementations.
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